Suppr超能文献

基于灵敏度的模拟开发:以强迫迁移为例。

Sensitivity-driven simulation development: a case study in forced migration.

机构信息

Department of Computer Science, Brunel University London, London, UK.

Centrum Wiskunde and Informatica, Amsterdam, The Netherlands.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200077. doi: 10.1098/rsta.2020.0077. Epub 2021 Mar 29.

Abstract

This paper presents an approach named sensitivity-driven simulation development (SDSD), where the use of sensitivity analysis (SA) guides the focus of further simulation development and refinement efforts, avoiding direct calibration to validation data. SA identifies assumptions that are particularly pivotal to the validation result, and in response model ruleset refinement resolves those assumptions in greater detail, balancing the sensitivity more evenly across the different assumptions and parameters. We implement and demonstrate our approach to refine agent-based models of forcibly displaced people in neighbouring countries. Over 70.8 million people are forcibly displaced worldwide, of which 26 million are refugees fleeing from armed conflicts, violence, natural disaster or famine. Predicting forced migration movements is important today, as it can help governments and NGOs to effectively assist vulnerable migrants and efficiently allocate humanitarian resources. We use an initial SA iteration to steer the simulation development process and identify several pivotal parameters. We then show that we are able to reduce the relative sensitivity of these parameters in a secondary SA iteration by approximately 54% on average. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification '.

摘要

本文提出了一种名为敏感性驱动模拟开发(SDSD)的方法,该方法使用敏感性分析(SA)来指导进一步的模拟开发和细化工作的重点,避免直接对验证数据进行校准。SA 确定了对验证结果特别关键的假设,并相应地通过模型规则集细化来更详细地解决这些假设,使敏感性在不同的假设和参数之间更加平衡。我们实施并展示了我们的方法,以细化邻国境内被迫流离失所者的基于主体的模型。全球有超过 7080 万人被迫流离失所,其中 2600 万人是逃离武装冲突、暴力、自然灾害或饥荒的难民。预测被迫移民流动在今天很重要,因为它可以帮助政府和非政府组织有效地帮助弱势移民,并有效地分配人道主义资源。我们使用初始 SA 迭代来指导模拟开发过程,并确定几个关键参数。然后,我们表明我们能够在二次 SA 迭代中使这些参数的相对敏感性平均降低约 54%。本文是主题为“计算科学中的可靠性和可重复性:实施验证、验证和不确定性量化”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3db/8059562/9ce4352dd215/rsta20200077f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验