Suppr超能文献

基于位置推文的慢性萎缩性胃炎情感研究

Sentimental study of CAA by location-based tweets.

作者信息

Vashisht Geetika, Sinha Yash Naveen

机构信息

Department of Computer Science, University of Delhi, New Delhi, India.

出版信息

Int J Inf Technol. 2021;13(4):1555-1567. doi: 10.1007/s41870-020-00604-8. Epub 2021 Mar 22.

Abstract

As people progressively resort to twitter to express their opinions or to disambiguate their sentiment, it's feasible to analyze the mass opinion to conclude the polarity of the subject at hand using sentiment analysis. Sentiment Analysis (SA) has revolutionized the way information is perceived today. Inspired by this, the work in this paper investigates the much-debated act- the Citizenship Amendment Act (CAA) by analyzing opinionated geo-tagged tweets, manually annotated and cross verified by six annotators. This is the first paper to the best of our knowledge to analyse CAA using SA and to provide a clear statistics of the mass opinion across the states of the nation. In this paper, machine learning approach is used for sentiment analysis of tweets. Support vector machine classifier is used to classify the tweets into three classes viz. positive, negative and neutral.

摘要

随着人们越来越多地借助推特来表达观点或阐明情绪,利用情感分析来剖析大众观点以推断手头主题的倾向是可行的。情感分析(SA)彻底改变了如今人们获取信息的方式。受此启发,本文的研究通过分析带有地理标签且表达观点的推文(这些推文由六名注释者手动注释并交叉验证),对备受争议的《公民身份修正案》(CAA)进行了调查。据我们所知,这是第一篇使用情感分析来分析《公民身份修正案》并提供全国各州大众观点清晰统计数据的论文。在本文中,机器学习方法被用于推文的情感分析。支持向量机分类器用于将推文分为三类,即积极、消极和中性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbbe/7982310/9b6d8b1b728f/41870_2020_604_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验