Suppr超能文献

基于混合模糊方法,利用社交网络中的信息扩散预测观点演变。

Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach.

作者信息

Uthirapathy Samson Ebenezar, Sandanam Domnic

机构信息

Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India.

Department of Computing Science and Engineering, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andra Pradesh 522213 India.

出版信息

Int J Inf Technol. 2023;15(1):87-100. doi: 10.1007/s41870-022-01109-2. Epub 2022 Oct 12.

Abstract

Social media plays an important role in disseminating information and analysing public and government opinions. The vast majority of previous research has examined information diffusion and opinion analysis separately. This study proposes a new framework for analysing both information diffusion and opinion evolution. The change in opinion over time is known as opinion evolution. To propose a new model for predicting information diffusion and opinion analysis in social media, a forest fire algorithm, cuckoo search, and fuzzy c-means clustering are used. The forest fire algorithm is used to determine the diffuser and non-diffuser of information in social networks, and fuzzy c-means clustering with the cuckoo search optimization algorithm is proposed to cluster Twitter content into various opinion categories and to determine opinion change. On different Twitter data sets, the proposed model outperformed the existing methods in terms of precision, recall, and accuracy.

摘要

社交媒体在传播信息以及分析公众和政府意见方面发挥着重要作用。绝大多数先前的研究都是分别考察信息传播和意见分析。本研究提出了一个用于分析信息传播和意见演变的新框架。意见随时间的变化被称为意见演变。为了提出一种预测社交媒体中信息传播和意见分析的新模型,使用了森林火灾算法、布谷鸟搜索算法和模糊c均值聚类算法。森林火灾算法用于确定社交网络中信息的传播者和非传播者,并且提出了结合布谷鸟搜索优化算法的模糊c均值聚类算法,将推特内容聚类为各种意见类别并确定意见变化。在不同的推特数据集上,所提出的模型在精确率、召回率和准确率方面均优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0427/9554852/3d9e0f6c90c1/41870_2022_1109_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验