Blanken Carmen P S, Westenberg Jos J M, Aben Jean-Paul, Bijvoet Geertruida P, Chamuleau Steven A J, Boekholdt S Matthijs, Nederveen Aart J, Leiner Tim, van Ooij Pim, Planken R Nils
Departments of Radiology and Nuclear Medicine (C.P.S.B., A.J.N., P.v.O., R.N.P.) and Cardiology (S.M.B.), Amsterdam University Medical Centers, Location Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (J.J.M.W.); Department of Research and Development, Pie Medical Imaging BV, Maastricht, the Netherlands (J.P.A.); and Departments of Cardiology (G.P.B., S.A.J.C.) and Radiology (T.L.), University Medical Center Utrecht, Utrecht, the Netherlands.
Radiol Cardiothorac Imaging. 2020 Oct 15;2(5):e200004. doi: 10.1148/ryct.2020200004. eCollection 2020 Oct.
To compare the accuracy of semiautomated flow tracking with that of semiautomated valve tracking in the quantification of mitral valve (MV) regurgitation from clinical four-dimensional (4D) flow MRI data obtained in patients with mild, moderate, or severe MV regurgitation.
The 4D flow MRI data were retrospectively collected from 30 patients (21 men; mean age, 61 years ± 10 [standard deviation]) who underwent 4D flow MRI from 2006 to 2016. Ten patients had mild MV regurgitation, nine had moderate MV regurgitation, and 11 had severe MV regurgitation, as diagnosed by using semiquantitative echocardiography. The regurgitant volume (Rvol) across the MV was obtained using three methods: indirect quantification of Rvol (Rvol), semiautomated quantification of Rvol using valve tracking (Rvol), and semiautomated quantification of Rvol using flow tracking (Rvol). A second observer repeated the measurements. Aortic valve flow was quantified as well to test for intervalve consistency. The Wilcoxon signed rank test, orthogonal regression, Bland-Altman analysis, and coefficients of variation were used to assess agreement among measurements and between observers.
Rvol was higher (median, 24.8 mL; interquartile range [IQR], 14.3-45.7 mL) than Rvol (median, 9.9 mL; IQR, 6.0-16.9 mL; < .001). Both Rvol and Rvol differed significantly from Rvol (median, 19.1 mL; IQR, 4.1-47.5 mL; = .03). Rvol agreed more with Rvol ( = 0.78 + 12, = 0.88) than with Rvol ( = 0.16 + 8.1, = 0.53). Bland-Altman analysis revealed underestimation of Rvol in severe MV regurgitation. Interobserver agreement was excellent for Rvol ( = 0.95, coefficient of variation = 27%) and moderate for Rvol ( = 0.72, coefficient of variation = 57%). Orthogonal regression demonstrated better intervalve consistency for flow tracking ( = 1.2 - 13.4, = 0.82) than for valve tracking ( = 2.7 - 92.4, = 0.67).
Flow tracking enables more accurate 4D flow MRI-derived MV regurgitation quantification than valve tracking in terms of agreement with indirect quantification and intervalve consistency, particularly in severe MV regurgitation.© RSNA, 2020.
比较半自动血流追踪与半自动瓣膜追踪在从轻度、中度或重度二尖瓣反流患者获得的临床四维(4D)血流磁共振成像(MRI)数据中定量二尖瓣(MV)反流的准确性。
回顾性收集2006年至2016年期间接受4D血流MRI检查的30例患者(21例男性;平均年龄61岁±10[标准差])的4D血流MRI数据。通过半定量超声心动图诊断,10例患者为轻度MV反流,9例为中度MV反流,11例为重度MV反流。使用三种方法获得MV的反流容积(Rvol):Rvol的间接定量(Rvol)、使用瓣膜追踪的Rvol半自动定量(Rvol)和使用血流追踪的Rvol半自动定量(Rvol)。另一位观察者重复测量。还对主动脉瓣血流进行了定量以测试瓣膜间的一致性。采用Wilcoxon符号秩检验、正交回归、Bland-Altman分析和变异系数来评估测量值之间以及观察者之间的一致性。
Rvol高于Rvol(中位数24.8 mL;四分位间距[IQR]14.3 - 45.7 mL)(P <.001)。Rvol和Rvol均与Rvol有显著差异(中位数19.1 mL;IQR 4.1 - 47.5 mL;P = 0.03)。Rvol与Rvol的一致性(r = 0.78 + 12,P = 0.88)高于与Rvol的一致性(r = 0.16 + 8.1,P = 0.53)。Bland-Altman分析显示在重度MV反流中Rvol被低估。观察者间一致性对于Rvol极佳(r = 0.95,变异系数 = 27%),对于Rvol为中等(r = 0.72,变异系数 = 57%)。正交回归表明血流追踪的瓣膜间一致性(r = 1.2 - 13.4,P = 0.82)优于瓣膜追踪(r = 2.7 - 92.4,P = 0.67)。
就与间接定量的一致性和瓣膜间一致性而言,尤其是在重度MV反流中,血流追踪比瓣膜追踪能实现更准确的基于4D血流MRI的MV反流定量。©RSNA,2020