AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain.
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia.
PLoS One. 2021 Mar 29;16(3):e0249327. doi: 10.1371/journal.pone.0249327. eCollection 2021.
The chemical composition of otoliths (earbones) can provide valuable information about stock structure and connectivity patterns among marine fish. For that, chemical signatures must be sufficiently distinct to allow accurate classification of an unknown fish to their area of origin. Here we have examined the suitability of otolith microchemistry as a tool to better understand the spatial dynamics of skipjack tuna (Katsuwonus pelamis), a highly valuable commercial species for which uncertainties remain regarding its stock structure in the Indian Ocean. For this aim, we have compared the early life otolith chemical composition of young-of-the-year (<6 months) skipjack tuna captured from the three main nursery areas of the equatorial Indian Ocean (West, Central and East). Elemental (Li:Ca, Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) and stable isotopic (δ13C, δ18O) signatures were used, from individuals captured in 2018 and 2019. Otolith Sr:Ca, Ba:Ca, Mg:Ca and δ18O significantly differed among fish from different nurseries, but, in general, the chemical signatures of the three nursery areas largely overlapped. Multivariate analyses of otolith chemical signatures revealed low geographic separation among Central and Eastern nurseries, achieving a maximum overall random forest cross validated classification success of 51%. Cohort effect on otolith trace element signatures was also detected, indicating that variations in chemical signatures associated with seasonal changes in oceanographic conditions must be well understood, particularly for species with several reproductive peaks throughout the year. Otolith microchemistry in conjunction with other techniques (e.g., genetics, particle tracking) should be further investigated to resolve skipjack stock structure, which will ultimately contribute to the sustainable management of this stock in the Indian Ocean.
耳石(内耳骨骼)的化学成分可以提供有关鱼类种群结构和海洋鱼类之间连通模式的有价值信息。为此,化学特征必须足够独特,以便能够准确地将未知鱼类分类到其起源地。在这里,我们研究了耳石微化学作为一种工具的适用性,以更好地了解鲣鱼(Katsuwonus pelamis)的空间动态,这种鱼具有很高的商业价值,但对于印度洋中其种群结构仍存在不确定性。为此,我们比较了 2018 年和 2019 年从赤道印度洋三个主要托儿所(西、中、东)捕获的年龄小于 6 个月的幼鲣鱼的早期生活耳石化学成分。使用了元素(Li:Ca、Sr:Ca、Ba:Ca、Mg:Ca 和 Mn:Ca)和稳定同位素(δ13C、δ18O)特征。来自不同托儿所的鱼类的耳石 Sr:Ca、Ba:Ca、Mg:Ca 和 δ18O 存在显著差异,但总体而言,这三个托儿所的化学特征有很大的重叠。耳石化学特征的多元分析显示,中央和东部托儿所之间的地理分离程度较低,最大的总体随机森林交叉验证分类成功率为 51%。还检测到耳石痕量元素特征的群体效应,这表明与海洋条件季节性变化相关的化学特征变化必须得到很好的理解,特别是对于一年中存在多个繁殖高峰期的物种。应进一步研究耳石微化学与其他技术(例如遗传学、颗粒跟踪)的结合,以解决鲣鱼的种群结构问题,这将最终有助于印度洋中该种群的可持续管理。