Peeters Els, Mackie Cameron, Candian Alessandra, Tielens Alexander G G M
Department of Physics & Astronomy, University of Western Ontario, London, Ontario, Canada.
Institute for Earth and Space Exploration, University of Western Ontario, London, Ontario, Canada.
Acc Chem Res. 2021 Apr 20;54(8):1921-1933. doi: 10.1021/acs.accounts.0c00747. Epub 2021 Mar 29.
ConspectusPolycyclic aromatic hydrocarbon molecules (PAHs) are ubiquitously present at high abundances in the Universe. They are detected through their infrared (IR) fluorescence UV pumped by nearby massive stars. Hence, their infrared emission is used to determine the star formation rate in galaxies, one of the key indicators for understanding the evolution of galaxies. Together with fullerenes, PAHs are the largest molecules found in space. They significantly partake in a variety of physical and chemical processes in space, influencing star and planet formation as well as galaxy evolution.Since the IR features from PAHs originate from chemical bonds involving only nearest neighbor atoms, they have only a weak dependence on the size and structure of the molecule, and it is therefore not possible to identify the individual PAH molecules that make up the cosmic PAH family. This strongly hampers the interpretation of their astronomical fingerprints. Despite the lack of identification, constraints can be set on the characteristics of the cosmic PAH family thanks to a joint effort of astronomers, physicists, and chemists.This Account presents the spectroscopic properties of the cosmic PAH emission as well as the intrinsic spectroscopic properties of PAHs and astronomical modeling of the PAH evolution required for the interpretation of the cosmic PAH characteristics. We discuss the observed spectral signatures tracing PAH properties such as charge, size, and structure and highlight the related challenges. We discuss the recent success of anharmonic calculations of PAH infrared absorption and emission spectra and outline the path forward. Finally, we illustrate the importance of models on PAH processing for the interpretation of the astronomical data in terms of the charge balance and PAH destruction.Throughout this Account, we emphasize that huge progress is on the horizon on the astronomical front. Indeed, the world is eagerly awaiting the launch of the James Webb Space Telescope (JWST). With its incredible improvement in spatial resolution, combined with its complete spectral coverage of the PAH infrared emission bands at medium spectral resolution and superb sensitivity, the JWST will revolutionize PAH research. Previous observations could only present spectra averaged over regions with vastly different properties, thus greatly confusing their interpretation. The amazing spatial resolution of JWST will disentangle these different regions. This will allow us to quantify precisely how PAHs are modified by the physical conditions of their host environment and thus trace how PAHs evolve across space. However, this will only be achieved when the necessary (and still missing) fundamental properties of PAHs, outlined in this Account, are known. We strongly encourage you to join this effort.
综述
多环芳烃分子(PAHs)在宇宙中普遍大量存在。它们通过附近大质量恒星泵浦产生的红外(IR)荧光被探测到。因此,它们的红外发射被用于确定星系中的恒星形成率,这是理解星系演化的关键指标之一。与富勒烯一起,PAHs是在太空中发现的最大分子。它们在太空中显著参与各种物理和化学过程,影响恒星和行星的形成以及星系演化。
由于PAHs的红外特征仅源于涉及最近邻原子的化学键,它们对分子的大小和结构依赖性较弱,因此无法识别构成宇宙PAH家族的单个PAH分子。这严重阻碍了对其天文指纹的解读。尽管缺乏识别,但由于天文学家、物理学家和化学家的共同努力,可以对宇宙PAH家族的特征进行限制。
本综述介绍了宇宙PAH发射的光谱特性以及PAHs的固有光谱特性,以及解释宇宙PAH特征所需的PAH演化的天文建模。我们讨论了追踪PAH性质(如电荷、大小和结构)的观测光谱特征,并强调了相关挑战。我们讨论了PAH红外吸收和发射光谱非谐计算的最新成功,并概述了未来的方向。最后,我们说明了PAH处理模型对于根据电荷平衡和PAH破坏来解释天文数据的重要性。
在本综述中,我们强调在天文学领域即将取得巨大进展。事实上,全世界都在热切期待詹姆斯·韦布空间望远镜(JWST)的发射。凭借其在空间分辨率上的惊人提升,再加上其在中等光谱分辨率下对PAH红外发射带的完整光谱覆盖以及卓越的灵敏度,JWST将彻底改变PAH研究。以前的观测只能呈现出在性质差异极大的区域上平均的光谱,从而极大地混淆了对它们的解读。JWST惊人的空间分辨率将解开这些不同区域。这将使我们能够精确量化PAHs如何被其宿主环境的物理条件所改变,从而追踪PAHs在太空中的演化。然而,只有当本综述中概述的PAHs必要(但仍缺失)的基本性质为人所知时,才能实现这一点。我们强烈鼓励您加入这项工作。