Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
J Environ Manage. 2021 Jun 15;288:112460. doi: 10.1016/j.jenvman.2021.112460. Epub 2021 Mar 26.
Phase separation and pH control are commonly used to improve methane production during anaerobic digestion (AD) of food waste, but their influencing mechanisms have not been fully discovered through microbial analysis. In this study, single-phase AD (SPAD), two-phase AD without pH control (TPAD-pHUC), and TPAD with fermentation pH controlled at 6.0 and 4.5 were conducted. The results showed that phase separation decreased the ratio of total bacteria to total archaea in the methanogenic phase. At the organic loading rate (OLR) of 1.9 g/(L·d), methanogenesis was dominated by acetoclastic Methanosaeta in both SPAD and TPAD-pHUC, while elevated Methanoculleus and active hydrogen production initiated a shift from the acetoclastic to hydrogenotrophic pathway in SPAD as OLR increased, eventually resulting in excessive acidification at OLR 3.2 g/(L·d). TPAD-pHUC was dominated by Methanosaeta with scarce hydrogen production genes, and thus maintained a delicate balance between fewer acidogens and methanogens at OLR 3.2-3.7 g/(L·d). TPAD with pH control exhibited higher methane yield (460-482 ml/g) at OLR 1.9 g/(L·d) due to the enhancement of protein degradation and the conversion from methylated compounds to methane by Methanosarcina. High Na concentration facilitated the proliferation of hydrogen production bacteria, but inhibited acetoclastic methanogenesis at OLR 2.4 g/(L·d). In comparison with SPAD and pH control, TPAD without pH control, integrating 4 d acidogenesis and 22 d methanogenesis, exhibited the best and steady performance at OLR 3.7 g/(L·d) with methane production exceeding 370 ml/g.
相分离和 pH 控制常用于提高食物垃圾厌氧消化(AD)过程中的甲烷产量,但通过微生物分析尚未完全发现其影响机制。在这项研究中,进行了单相 AD(SPAD)、无 pH 控制的两相 AD(TPAD-pHUC)和发酵 pH 分别控制在 6.0 和 4.5 的 TPAD。结果表明,相分离降低了产甲烷相中总细菌与总古菌的比例。在有机负荷率(OLR)为 1.9 g/(L·d)时,SPAD 和 TPAD-pHUC 中的产甲烷作用均由乙酸营养型 Methanosaeta 主导,而随着 OLR 的增加,产甲烷菌 Methanoculleus 增多和活性氢的产生引发了从乙酸营养型到氢营养型途径的转变,最终导致 OLR 为 3.2 g/(L·d)时过度酸化。TPAD-pHUC 由 Methanosaeta 主导,产氢基因稀少,因此在 OLR 为 3.2-3.7 g/(L·d)时,酸菌和产甲烷菌之间保持着微妙的平衡。TPAD 具有 pH 控制时,由于蛋白质降解的增强以及甲基化合物向甲烷的转化,在 OLR 为 1.9 g/(L·d)时表现出较高的甲烷产率(460-482 ml/g)。高 Na 浓度促进了产氢菌的增殖,但在 OLR 为 2.4 g/(L·d)时抑制了乙酸营养型产甲烷作用。与 SPAD 和 pH 控制相比,无 pH 控制的 TPAD 在 OLR 为 3.7 g/(L·d)时具有最佳和稳定的性能,甲烷产量超过 370 ml/g,将 4 d 的产酸和 22 d 的产甲烷整合在一起。