Kong Fanlin, Zhang Hongyu, Chai Hui, Liu Baolin, Cao Yali
Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China.
Inorg Chem. 2021 Apr 19;60(8):5812-5820. doi: 10.1021/acs.inorgchem.1c00144. Epub 2021 Mar 30.
α-MnO nanorods and flower-like γ-MnO microspheres were synthesized by facile and mild methods to illustrate the effect of crystal structures and surface features on catalytic performance with the help of carbon monoxide (CO) oxidation. It is revealed that the flower-like γ-MnO microspheres possess better catalytic oxidation performance (CO complete conversion temperature at 120 °C and long-time stability for 50 h) than α-MnO nanorods, which can be attributed to the obvious differences in the chemical bonds and linking modes of [MnO] octahedra due to the different crystal structures. γ-MnO possesses lower Mn-O bond strength that enables γ-MnO to present a large amount of surface lattice oxygen and superior oxygen mobility. The disordered random intergrowth tunnel structure can adsorb effectively CO molecules, resulting in excellent catalytic performance for CO catalytic oxidation. In addition, the MnO catalyst probably occurred via a Mars-van Krevelen mechanism for CO oxidation. This work provides an insight into the effect of crystal structures and surface property of manganese oxide on catalytic oxidation performance, which presents help for the future design of promising catalysts with excellent catalytic performance.
通过简便温和的方法合成了α-MnO纳米棒和花状γ-MnO微球,借助一氧化碳(CO)氧化反应来说明晶体结构和表面特征对催化性能的影响。结果表明,花状γ-MnO微球比α-MnO纳米棒具有更好的催化氧化性能(CO完全转化温度为120℃,并具有50小时的长期稳定性),这可归因于不同晶体结构导致的[MnO]八面体化学键和连接方式的明显差异。γ-MnO具有较低的Mn-O键强度,使得γ-MnO呈现出大量的表面晶格氧和优异的氧迁移率。无序的随机共生隧道结构能够有效吸附CO分子,从而对CO催化氧化具有优异的催化性能。此外,MnO催化剂可能通过Mars-van Krevelen机制进行CO氧化。这项工作深入了解了氧化锰的晶体结构和表面性质对催化氧化性能的影响,为未来设计具有优异催化性能的理想催化剂提供了帮助。