Modarres Mo, Cochran David, Kennedy David N, Schmidt Richard, Fitzpatrick Paula, Frazier Jean A
The Eunice Kennedy Shriver Center Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Room S3-312, Worcester, MA, 01655, USA.
The Eunice Kennedy Shriver Center Department of Psychiatry, University of Massachusetts Medical School)/ UMass Memorial Health Care, Worcester, MA, USA.
Neuroinformatics. 2022 Jan;20(1):53-62. doi: 10.1007/s12021-021-09517-8. Epub 2021 Mar 30.
Electroencephalography (EEG) coherence analysis, based on measurement of synchronous oscillations of neuronal clusters, has been used extensively to evaluate functional connectivity in brain networks. EEG coherence studies have used a variety of analysis variables (e.g., time and frequency resolutions corresponding to the analysis time period and frequency bandwidth), regions of the brain (e.g., connectivity within and between various cortical lobes and hemispheres) and experimental paradigms (e.g., resting state with eyes open or closed; performance of cognitive tasks). This variability in study designs has resulted in difficulties in comparing the findings from different studies and assimilating a comprehensive understanding of the underlying brain activity and regions with abnormal functional connectivity in a particular disorder. In order to address the variability in methods across studies and to facilitate the comparison of research findings between studies, this paper presents the structure and utilization of a comprehensive hierarchical electroencephalography (EEG) coherence analysis that allows for formal inclusion of analysis duration, EEG frequency band, cortical region, and experimental test condition in the computation of the EEG coherences. It further describes the method by which this EEG coherence analysis can be utilized to derive biomarkers related to brain (dys)function and abnormalities. In order to document the utility of this approach, the paper describes the results of the application of this method to EEG and behavioral data from a social synchrony paradigm in a small cohort of adolescents with and without Autism Spectral Disorder.
基于神经元集群同步振荡测量的脑电图(EEG)相干分析已被广泛用于评估脑网络中的功能连接。EEG相干研究使用了多种分析变量(例如,与分析时间段和频率带宽相对应的时间和频率分辨率)、脑区(例如,各个皮质叶和半球内部及之间的连接性)和实验范式(例如,睁眼或闭眼的静息状态;认知任务的执行)。研究设计的这种变异性导致难以比较不同研究的结果,也难以全面理解特定疾病中潜在的脑活动以及功能连接异常的区域。为了解决不同研究方法的变异性并便于比较研究之间的结果,本文介绍了一种全面的分层脑电图(EEG)相干分析的结构和应用,该分析允许在计算EEG相干性时正式纳入分析时长、EEG频段、皮质区域和实验测试条件。本文还进一步描述了如何利用这种EEG相干分析来得出与脑(功能)障碍和异常相关的生物标志物。为了证明这种方法的实用性,本文描述了将该方法应用于一小群患有和未患有自闭症谱系障碍的青少年的社会同步范式的EEG和行为数据的结果。
Psychiatriki. 2014
BMC Neurol. 2019-2-14
Clin Neurophysiol. 2008-5