Ji Chengtao, Maurits Natasha M, Roerdink Jos B T M
1Bernoulli Institute for Mathematics and Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, Groningen, 9747AG The Netherlands.
Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9713GZ The Netherlands.
Appl Netw Sci. 2018;3(1):41. doi: 10.1007/s41109-018-0096-x. Epub 2018 Sep 26.
An electroencephalography (EEG) coherence network is a representation of functional brain connectivity, and is constructed by calculating the coherence between pairs of electrode signals as a function of frequency. Typical visualizations of coherence networks use a matrix representation with rows and columns representing electrodes and cells representing coherences between electrode signals, or a 2D node-link diagram with vertices representing electrodes and edges representing coherences. However, such representations do not allow an easy embedding of spatial information or they suffer from visual clutter, especially for multichannel EEG coherence networks. In this paper, a new method for data-driven visualization of multichannel EEG coherence networks is proposed to avoid the drawbacks of conventional methods. This method partitions electrodes into dense groups of spatially connected regions. It not only preserves spatial relationships between regions, but also allows an analysis of the functional connectivity within and between brain regions, which could be used to explore the relationship between functional connectivity and underlying brain structures. As an example application, the method is applied to the analysis of multichannel EEG coherence networks obtained from older and younger adults who perform a cognitive task. The proposed method can serve as a preprocessing step before a more detailed analysis of EEG coherence networks.
脑电图(EEG)相干网络是大脑功能连接的一种表示形式,它通过计算电极信号对之间的相干性作为频率的函数来构建。相干网络的典型可视化使用矩阵表示,其中行和列表示电极,单元格表示电极信号之间的相干性,或者使用二维节点 - 链接图,其中顶点表示电极,边表示相干性。然而,这种表示方式不容易嵌入空间信息,或者会受到视觉混乱的影响,特别是对于多通道EEG相干网络。本文提出了一种用于多通道EEG相干网络数据驱动可视化的新方法,以避免传统方法的缺点。该方法将电极划分为空间连接区域的密集组。它不仅保留了区域之间的空间关系,还允许分析脑区内部和之间的功能连接,这可用于探索功能连接与潜在脑结构之间的关系。作为一个示例应用,该方法应用于对执行认知任务的老年人和年轻人获得的多通道EEG相干网络的分析。所提出的方法可以作为对EEG相干网络进行更详细分析之前的预处理步骤。
IEEE Trans Vis Comput Graph. 2008
J Neurosci Methods. 2008-6-30
J Med Signals Sens. 2022-5-12
Front Psychiatry. 2022-7-11
Front Hum Neurosci. 2024-1-26
Cogn Neurodyn. 2022-2
Front Hum Neurosci. 2012-5-21
Neuroimage. 2012-3-5
Front Neuroinform. 2011-6-6
Comput Intell Neurosci. 2011-3-14
Science. 2010-9-10
Neuron. 2010-7-15
Neuroimage. 2009-10-9
IEEE Trans Vis Comput Graph. 2008