文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于社区结构分析的多通道脑电图相干网络的数据驱动可视化

Data-driven visualization of multichannel EEG coherence networks based on community structure analysis.

作者信息

Ji Chengtao, Maurits Natasha M, Roerdink Jos B T M

机构信息

1Bernoulli Institute for Mathematics and Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, Groningen, 9747AG The Netherlands.

Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9713GZ The Netherlands.

出版信息

Appl Netw Sci. 2018;3(1):41. doi: 10.1007/s41109-018-0096-x. Epub 2018 Sep 26.


DOI:10.1007/s41109-018-0096-x
PMID:30839824
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6214333/
Abstract

An electroencephalography (EEG) coherence network is a representation of functional brain connectivity, and is constructed by calculating the coherence between pairs of electrode signals as a function of frequency. Typical visualizations of coherence networks use a matrix representation with rows and columns representing electrodes and cells representing coherences between electrode signals, or a 2D node-link diagram with vertices representing electrodes and edges representing coherences. However, such representations do not allow an easy embedding of spatial information or they suffer from visual clutter, especially for multichannel EEG coherence networks. In this paper, a new method for data-driven visualization of multichannel EEG coherence networks is proposed to avoid the drawbacks of conventional methods. This method partitions electrodes into dense groups of spatially connected regions. It not only preserves spatial relationships between regions, but also allows an analysis of the functional connectivity within and between brain regions, which could be used to explore the relationship between functional connectivity and underlying brain structures. As an example application, the method is applied to the analysis of multichannel EEG coherence networks obtained from older and younger adults who perform a cognitive task. The proposed method can serve as a preprocessing step before a more detailed analysis of EEG coherence networks.

摘要

脑电图(EEG)相干网络是大脑功能连接的一种表示形式,它通过计算电极信号对之间的相干性作为频率的函数来构建。相干网络的典型可视化使用矩阵表示,其中行和列表示电极,单元格表示电极信号之间的相干性,或者使用二维节点 - 链接图,其中顶点表示电极,边表示相干性。然而,这种表示方式不容易嵌入空间信息,或者会受到视觉混乱的影响,特别是对于多通道EEG相干网络。本文提出了一种用于多通道EEG相干网络数据驱动可视化的新方法,以避免传统方法的缺点。该方法将电极划分为空间连接区域的密集组。它不仅保留了区域之间的空间关系,还允许分析脑区内部和之间的功能连接,这可用于探索功能连接与潜在脑结构之间的关系。作为一个示例应用,该方法应用于对执行认知任务的老年人和年轻人获得的多通道EEG相干网络的分析。所提出的方法可以作为对EEG相干网络进行更详细分析之前的预处理步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/6447206ac21b/41109_2018_96_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/b33260d68bfe/41109_2018_96_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/8714e0a6d14e/41109_2018_96_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/592f2130cfc1/41109_2018_96_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/9ca6c37747bf/41109_2018_96_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/6b059b16bfdf/41109_2018_96_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/5d4197b90826/41109_2018_96_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/7c6af18e10ef/41109_2018_96_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/4c5f3c9502ee/41109_2018_96_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/6447206ac21b/41109_2018_96_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/b33260d68bfe/41109_2018_96_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/8714e0a6d14e/41109_2018_96_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/592f2130cfc1/41109_2018_96_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/9ca6c37747bf/41109_2018_96_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/6b059b16bfdf/41109_2018_96_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/5d4197b90826/41109_2018_96_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/7c6af18e10ef/41109_2018_96_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/4c5f3c9502ee/41109_2018_96_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7901/6214333/6447206ac21b/41109_2018_96_Fig9_HTML.jpg

相似文献

[1]
Data-driven visualization of multichannel EEG coherence networks based on community structure analysis.

Appl Netw Sci. 2018

[2]
Data-driven visualization and group analysis of multichannel EEG coherence with functional units.

IEEE Trans Vis Comput Graph. 2008

[3]
Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

J Vis Exp. 2012-6-26

[4]
High-density EEG coherence analysis using functional units applied to mental fatigue.

J Neurosci Methods. 2008-6-30

[5]
Biomarkers Based on Comprehensive Hierarchical EEG Coherence Analysis: Example Application to Social Competence in Autism (Preliminary Results).

Neuroinformatics. 2022-1

[6]
Quantitative Analysis of Inter- and Intrahemispheric Coherence on Epileptic Electroencephalography Signal.

J Med Signals Sens. 2022-5-12

[7]
The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study.

Brain Res. 2009-5-13

[8]
Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing.

Clin Neurophysiol. 2015-11

[9]
Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence.

Stat Med. 2007-9-20

[10]
EEG-FCV: An EEG-Based Functional Connectivity Visualization Framework for Cognitive State Evaluation.

Front Psychiatry. 2022-7-11

引用本文的文献

[1]
Is badfiction processed differently by the human brain? An electrophysical study on reading experience.

Front Hum Neurosci. 2024-1-26

[2]
V-NeuroStack: Open-source 3D time stack software for identifying patterns in neuronal data.

J Neurosci Res. 2023-2

[3]
A survey of brain network analysis by electroencephalographic signals.

Cogn Neurodyn. 2022-2

本文引用的文献

[1]
BrainNet Viewer: a network visualization tool for human brain connectomics.

PLoS One. 2013-7-4

[2]
Differential synchronization in default and task-specific networks of the human brain.

Front Hum Neurosci. 2012-5-21

[3]
Visual analytics of brain networks.

Neuroimage. 2012-3-5

[4]
The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes.

Front Neuroinform. 2011-6-6

[5]
Functional community analysis of brain: a new approach for EEG-based investigation of the brain pathology.

Neuroimage. 2011-5-7

[6]
BrainNetVis: an open-access tool to effectively quantify and visualize brain networks.

Comput Intell Neurosci. 2011-3-14

[7]
Prediction of individual brain maturity using fMRI.

Science. 2010-9-10

[8]
A parcellation scheme for human left lateral parietal cortex.

Neuron. 2010-7-15

[9]
Complex network measures of brain connectivity: uses and interpretations.

Neuroimage. 2009-10-9

[10]
Data-driven visualization and group analysis of multichannel EEG coherence with functional units.

IEEE Trans Vis Comput Graph. 2008

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索