Zaletel Michael P, Kaufman Adam, Stamper-Kurn Dan M, Yao Norman Y
Department of Physics, University of California Berkeley, Berkeley, California 94720, USA.
JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev Lett. 2021 Mar 12;126(10):103401. doi: 10.1103/PhysRevLett.126.103401.
We propose and analyze a method for preparing low entropy many-body states in isolated quantum optical systems of atoms, ions, and molecules. Our approach is based upon shifting entropy between different regions of a system by spatially modulating the magnitude of the effective Hamiltonian. We conduct two case studies, on a topological spin chain and the spinful fermionic Hubbard model, focusing on the key question: can a "conformal cooling quench" remove sufficient entropy within experimentally accessible timescales? Finite-temperature, time-dependent matrix product state calculations reveal that even moderately sized bath regions can remove enough energy and entropy density to expose coherent low-temperature physics. The protocol is particularly natural in systems with long-range interactions, such as lattice-trapped polar molecules and Rydberg-excited atoms, where the magnitude of the Hamiltonian scales directly with the interparticle spacing. To this end, we propose simple, near-term implementations of conformal cooling quenches in systems of atoms or molecules, where signatures of low-temperature phases may be observed.
我们提出并分析了一种在原子、离子和分子的孤立量子光学系统中制备低熵多体态的方法。我们的方法基于通过空间调制有效哈密顿量的大小在系统的不同区域之间转移熵。我们对拓扑自旋链和有自旋的费米子哈伯德模型进行了两个案例研究,重点关注关键问题:“共形冷却猝灭”能否在实验可及的时间尺度内去除足够的熵?有限温度、含时矩阵乘积态计算表明,即使是中等大小的浴区也能去除足够的能量和熵密度,以展现相干的低温物理。该协议在具有长程相互作用的系统中特别自然,例如晶格捕获的极性分子和里德堡激发的原子,其中哈密顿量的大小直接与粒子间间距成比例。为此,我们提出了在原子或分子系统中进行共形冷却猝灭的简单、近期实现方案,在这些系统中可以观察到低温相的特征。