Han Yong Woon, Lee Hyoung Seok, Moon Doo Kyung
Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
The Academy of Applied Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Apr 28;13(16):19085-19098. doi: 10.1021/acsami.1c01021. Epub 2021 Mar 30.
For the commercialization of organic solar cells (OSCs), the fabrication of large-area modules a solution process is important. The fabrication of OSCs a solution process using a nonfullerene acceptor (NFA)-based photoactive layer is limited by the energetic mismatch and carrier recombination, reducing built-in potential and effective carriers. Herein, for the fabrication of high-performance NFA-based large-area OSCs and modules a solution process, hybrid hole transport layers (h-HTLs) incorporating WO and MoO are developed. The high bond energies and electronegativities of W and Mo atoms afford changes in the electronic properties of the h-HTLs, which can allow easy control of the energy levels. The h-HTLs show matching energy levels that are suitable for both deep and low-lying highest occupied molecular orbital energy level systems with a stoichiometrically small amount of oxygen vacancies (forming W and Mo from the W and Mo), affording high conductivity and good film forming properties. With the NFA-based photoactive layer, a large-area module fabricated the all-printing process with an active area over 30 cm and a high power conversion efficiency (PCE) of 8.1% is obtained. Furthermore, with the h-HTL, the fabricated semitransparent module exhibits 7.2% of PCE and 22.3% of average visible transmittance with high transparency, indicating applicable various industrial potentials.
对于有机太阳能电池(OSC)的商业化而言,采用溶液法制备大面积模块至关重要。基于非富勒烯受体(NFA)的光活性层通过溶液法制备OSC受到能量失配和载流子复合的限制,这会降低内置电势和有效载流子。在此,为了通过溶液法制备高性能的基于NFA的大面积OSC和模块,开发了包含WO和MoO的混合空穴传输层(h-HTL)。W和Mo原子的高键能和电负性使h-HTL的电子性质发生变化,从而能够轻松控制能级。h-HTL显示出匹配的能级,适用于具有化学计量少量氧空位(由W和Mo形成W和Mo)的深能级和低能级最高占据分子轨道能级系统,具有高导电性和良好的成膜性能。使用基于NFA的光活性层,通过全印刷工艺制备了有源面积超过30平方厘米且功率转换效率(PCE)高达8.1%的大面积模块。此外,使用h-HTL制备的半透明模块具有7.2%的PCE和22.3%的平均可见光透过率,具有高透明度,表明具有各种适用的工业潜力。