Suppr超能文献

使用机器学习预测冠状动脉旁路移植术患者的住院时间。

Predicting Length of Stay of Coronary Artery Bypass Grafting Patients Using Machine Learning.

机构信息

Vanderbilt University School of Medicine, Nashville, Tennessee.

Vanderbilt University Medical Center, Department of Cardiac Surgery, Nashville, Tennessee; Vanderbilt University Medical Center, Department of Thoracic Surgery, Nashville, Tennessee.

出版信息

J Surg Res. 2021 Aug;264:68-75. doi: 10.1016/j.jss.2021.02.003. Epub 2021 Mar 27.

Abstract

BACKGROUND

There is a growing need to identify which bits of information are most valuable for healthcare providers. The aim of this study was to search for the highest impact variables in predicting postsurgery length of stay (LOS) for patients who undergo coronary artery bypass grafting (CABG).

MATERIALS AND METHODS

Using a single institution's Society of Thoracic Surgeons (STS) Registry data, 2121 patients with elective or urgent, isolated CABG were analyzed across 116 variables. Two machine learning techniques of random forest and artificial neural networks (ANNs) were used to search for the highest impact variables in predicting LOS, and results were compared against multiple linear regression. Out-of-sample validation of the models was performed on 105 patients.

RESULTS

Of the 10 highest impact variables identified in predicting LOS, four of the most impactful variables were duration intubated, last preoperative creatinine, age, and number of intraoperative packed red blood cell transfusions. The best performing model was an ANN using the ten highest impact variables (testing sample mean absolute error (MAE) = 1.685 d, R = 0.232), which performed consistently in the out-of-sample validation (MAE = 1.612 d, R = 0.150).

CONCLUSION

Using machine learning, this study identified several novel predictors of postsurgery LOS and reinforced certain known risk factors. Out of the entire STS database, only a few variables carry most of the predictive value for LOS in this population. With this knowledge, a simpler linear regression model has been shared and could be used elsewhere after further validation.

摘要

背景

越来越需要确定哪些信息对医疗保健提供者最有价值。本研究旨在寻找预测行冠状动脉旁路移植术(CABG)患者术后住院时间(LOS)的最高影响变量。

材料与方法

使用单一机构的胸外科医师学会(STS)注册数据,分析了 2121 例择期或紧急、孤立性 CABG 患者的 116 个变量。采用随机森林和人工神经网络(ANNs)两种机器学习技术,搜索预测 LOS 的最高影响变量,并与多元线性回归进行比较。对 105 例患者进行了模型的外部样本验证。

结果

在所识别的预测 LOS 的 10 个最高影响变量中,有 4 个最具影响力的变量是插管持续时间、术前最后一次肌酐、年龄和术中输浓缩红细胞的数量。表现最好的模型是使用前 10 个最高影响变量的 ANN(测试样本平均绝对误差(MAE)= 1.685 d,R = 0.232),在外部样本验证中表现一致(MAE = 1.612 d,R = 0.150)。

结论

使用机器学习,本研究确定了术后 LOS 的几个新的预测指标,并强化了某些已知的危险因素。在整个 STS 数据库中,只有少数变量对该人群的 LOS 具有最大的预测价值。有了这些知识,我们分享了一个更简单的线性回归模型,在进一步验证后可以在其他地方使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验