Fernández-Real Xavier, Ros-Oton Xavier
EPFL SB, Station 8, 1015 Lausanne, Switzerland.
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
Arch Ration Mech Anal. 2021;240(1):419-466. doi: 10.1007/s00205-021-01617-8. Epub 2021 Feb 11.
We investigate the regularity of the free boundary for the Signorini problem in . It is known that regular points are -dimensional and . However, even for obstacles , the set of non-regular (or degenerate) points could be very large-e.g. with infinite measure. The only two assumptions under which a nice structure result for degenerate points has been established are when is analytic, and when . However, even in these cases, the set of degenerate points is in general -dimensional-as large as the set of regular points. In this work, we show for the first time that, "usually", the set of degenerate points is . Namely, we prove that, given any obstacle, for solution the non-regular part of the free boundary is at most -dimensional. This is the first result in this direction for the Signorini problem. Furthermore, we prove analogous results for the obstacle problem for the fractional Laplacian , and for the parabolic Signorini problem. In the parabolic Signorini problem, our main result establishes that the non-regular part of the free boundary is -dimensional for almost all times , for some . Finally, we construct some new examples of free boundaries with degenerate points.
我们研究了 中Signorini问题自由边界的正则性。已知正则点是 维的且 。然而,即使对于 障碍物 ,非正则(或退化)点的集合可能非常大——例如具有无限测度。仅在两种假设下建立了关于退化点的良好结构结果,即 是解析的情况,以及 的情况。然而,即使在这些情况下,退化点的集合通常也是 维的——与正则点的集合一样大。在这项工作中,我们首次表明,“通常”退化点的集合是 。也就是说,我们证明了,给定任何 障碍物,对于 解,自由边界的非正则部分至多是 维的。这是Signorini问题在这个方向上的第一个结果。此外,我们证明了分数阶拉普拉斯 的障碍问题以及抛物型Signorini问题的类似结果。在抛物型Signorini问题中,我们的主要结果表明,对于几乎所有的时间 ,对于某个 ,自由边界的非正则部分是 维的。最后,我们构造了一些具有退化点的自由边界的新例子。