Suppr超能文献

由于氧化应激和其他因素导致的人类毛囊老化加速的数学建模。

Mathematical modelling of ageing acceleration of the human follicle due to oxidative stress and other factors.

机构信息

Instituto de Investigación en Matemáticas de la Universidad de Valladolid (IMUVa), Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.

出版信息

Math Med Biol. 2021 Aug 15;38(3):273-291. doi: 10.1093/imammb/dqab004.

Abstract

There is a gradual telomere shortening due to the inability of the replication machinery to copy the very ends of chromosomes. Additionally, other factors such as high levels of oxidation (free radicals or reactive oxygen species (ROS)), e.g. due to cumulated stress, inflammation or tobacco smoke, accelerate telomere shortening. In humans, the average telomere length is about 10-15 kb at birth and telomeres shorten at a pace of 70 bp per year. However, when cells are exposed to ROS, telomere attrition happens at a faster pace, generating a wide variety of telomere size distribution in different length percentiles, which are different to what is expected just by age. In this work, the generational age of a cell is associated with its telomere length (TL), from certain maximum to the minimal TL that allows replication. In order to study the accumulation of aged granulosa cells in human follicles, from preantral to preovulatory size, a mathematical model is proposed, regarding different degrees of accelerated telomere shortening, which reflect the action of ROS in addition to the telomere shortening that happens after cell division. In cases of cells with TL shorter than cells with average TL, with low telomerase activity and accelerated telomere shortening, the mathematical model predicts an aged outcome in preovulatory follicles. The model provides a plausible explanation for what has been observed in oocytes from older women, which have been exposed to ROS for a longer period of time and have bad outcomes after in vitro fertilization.

摘要

由于复制机制无法复制染色体的末端,因此会导致端粒逐渐缩短。此外,其他因素,如高水平的氧化(自由基或活性氧(ROS)),例如由于累积的压力、炎症或烟草烟雾,会加速端粒缩短。在人类中,出生时的平均端粒长度约为 10-15kb,端粒每年缩短 70bp。然而,当细胞暴露于 ROS 时,端粒磨损的速度会加快,产生各种不同长度的端粒分布,与仅由年龄预测的结果不同。在这项工作中,细胞的世代年龄与端粒长度(TL)相关,从特定的最大端粒长度到允许复制的最小端粒长度。为了研究人类卵泡中从原始卵泡到排卵前大小的老化颗粒细胞的积累,提出了一个数学模型,考虑了不同程度的加速端粒缩短,这反映了 ROS 的作用,除了细胞分裂后发生的端粒缩短之外。在 TL 短于平均 TL 的细胞中,端粒酶活性低且端粒缩短加速的情况下,数学模型预测排卵前卵泡会出现老化结局。该模型为在体外受精后卵子观察到的情况提供了合理的解释,这些卵子已经暴露于 ROS 更长时间,并且结果不佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验