Suppr超能文献

空气传导和骨传导听力下耳蜗行波的有限元模拟。

Finite element simulation of cochlear traveling wave under air and bone conduction hearing.

机构信息

ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, China.

Department of FPRS, Eye & ENT Hospital, Fudan University, Shanghai, China.

出版信息

Biomech Model Mechanobiol. 2021 Aug;20(4):1251-1265. doi: 10.1007/s10237-021-01443-7. Epub 2021 Mar 30.

Abstract

Besides the normal hearing pathway known as air conduction (AC), sound can also transmit to the cochlea through the skull, known as bone conduction (BC). During BC stimulation, the cochlear walls demonstrate rigid body motion (RBM) and compressional motion (CPM), both inducing the basilar membrane traveling wave (TW). Despite numerous measuring and modeling efforts for the TW phenomenon, the mechanism remains unclear, especially in the case of BC. This paper proposes a 3D finite element cochlea model mimicking the TW under BC. The model uses a traditional "box model" form, but in a spiral shape, with two fluid chambers separated by the long and flexible BM. The cochlear fluid was enclosed by bony walls, the oval and round window membranes. Contingent boundary conditions and stimulations are introduced according to the physical basis of AC and BC. Particularly for BC, both RBM and CPM of the cochlea walls are simulated. Harmonic numerical solutions are obtained at multiple frequencies among the hearing range. The BM vibration amplitude ([Formula: see text]) and its relation with volume displacement difference between the oval and round windows [Formula: see text], as well as the pressure difference at the base of the cochlea ([Formula: see text]), are analyzed. The simulated BM response at 12 mm from the base is peaked at about 3 k Hz, which is consistent with published experimental data. The TW properties under AC and BC are the same and have a common mechanism. (1) [Formula: see text] is proportional to [Formula: see text] at low frequencies. (2) [Formula: see text] is also proportional to [Formula: see text], within 5 dB error at high frequencies such as 16 k Hz. This study partly reveals the common quantitative relations between the TW and related factors under AC and BC hearing.

摘要

除了已知的空气传导(AC)正常听觉途径外,声音也可以通过颅骨传播到耳蜗,称为骨传导(BC)。在 BC 刺激过程中,耳蜗壁表现出刚体运动(RBM)和压缩运动(CPM),这两种运动会引起基底膜行波(TW)。尽管对 TW 现象进行了大量的测量和建模工作,但该机制仍不清楚,尤其是在 BC 的情况下。本文提出了一种模拟 BC 下 TW 的 3D 有限元耳蜗模型。该模型采用传统的“盒模型”形式,但呈螺旋状,长而灵活的 BM 将两个流体腔隔开。耳蜗流体被骨性壁、卵圆窗和圆窗膜包围。根据 AC 和 BC 的物理基础引入了随时间变化的边界条件和刺激。特别是对于 BC,模拟了耳蜗壁的 RBM 和 CPM。在听力范围内的多个频率下获得了谐数值解。分析了 BM 振动幅度 ([Formula: see text]) 及其与卵圆窗和圆窗之间体积位移差 [Formula: see text] 的关系,以及耳蜗基底的压力差 ([Formula: see text])。在距基底 12mm 处模拟的 BM 响应在约 3kHz 处达到峰值,这与已发表的实验数据一致。AC 和 BC 下的 TW 特性相同,具有共同的机制。(1)[Formula: see text] 在低频时与 [Formula: see text] 成正比。(2)[Formula: see text] 在高频(如 16kHz)时也与 [Formula: see text] 成正比,误差在 5dB 以内。本研究部分揭示了 AC 和 BC 听力下 TW 与相关因素之间的共同定量关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验