Suppr超能文献

氧还原反应过程中MoC(100)载体上单原子中心的结构演变及潜在机制

Structural Evolution and Underlying Mechanism of Single-Atom Centers on MoC(100) Support during Oxygen Reduction Reaction.

作者信息

Huang Xiang, Wang Jiong, Gao Jiajian, Zhang Zhe, Gan Li-Yong, Xu Hu

机构信息

Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

Institute of Advanced Synthesis (IAS), School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.

出版信息

ACS Appl Mater Interfaces. 2021 Apr 14;13(14):17075-17084. doi: 10.1021/acsami.1c01477. Epub 2021 Mar 31.

Abstract

The single-metal atoms coordinating with the surface atoms of the support constitute the active centers of as-prepared single-atom catalysts (SACs). However, under hash electrochemical conditions, (1) supports' surfaces may experience structural change, which turn to be distinct from those at ambient conditions; (2) during catalysis, the dynamic responses of a single atom to the attack of reaction intermediates likely change the coordination environment of a single atom. These factors could alter the performance of SACs. Herein, we investigate these issues using MoC(100)-supported single transition-metal (TM) atoms as model SACs toward catalyzing the oxygen reduction reaction (ORR). It is found that the MoC(100) surface is oxidized under ORR turnover conditions, resulting in significantly weakened bonding between single TM atoms and the MoC(100) surface (TM@MoC(100)_O* term for SAC). While the intermediate in 2 e ORR does not change the local structures of the active centers in these SACs, the O* intermediate emerging in 4 e ORR can damage Rh@ and Cu@MoC(100)_O*. Furthermore, on the basis of these findings, we propose Pt@MoC(100)_O* as a qualified ORR catalyst, which exhibits extraordinary 4 e ORR activity with an overpotential of only 0.33 V, surpassing the state-of-the-art Pt(111), and thus being identified as a promising alternative to the commercial Pt/C catalyst.

摘要

与载体表面原子配位的单金属原子构成了所制备的单原子催化剂(SAC)的活性中心。然而,在苛刻的电化学条件下,(1)载体表面可能会发生结构变化,这与环境条件下的表面结构不同;(2)在催化过程中,单个原子对反应中间体攻击的动态响应可能会改变单个原子的配位环境。这些因素可能会改变SAC的性能。在此,我们以MoC(100)负载的单过渡金属(TM)原子作为模型SAC来研究这些问题,以催化氧还原反应(ORR)。研究发现,在ORR周转条件下,MoC(100)表面被氧化,导致单个TM原子与MoC(100)表面之间的键合显著减弱(SAC的TM@MoC(100)_O项)。虽然2e ORR中的中间体不会改变这些SAC中活性中心的局部结构,但4e ORR中出现的O中间体可能会破坏Rh@和Cu@MoC(100)_O*。此外,基于这些发现,我们提出Pt@MoC(100)_O*作为一种合格的ORR催化剂,它表现出非凡的4e ORR活性,过电位仅为0.33 V,超过了目前最先进的Pt(111),因此被认为是商业Pt/C催化剂的一个有前途的替代品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验