Suppr超能文献

AMPGAN v2:基于机器学习的抗菌肽设计。

AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides.

机构信息

Department of Computer Science, University of Vermont, Burlington, Vermont 05405, United States.

Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States.

出版信息

J Chem Inf Model. 2021 May 24;61(5):2198-2207. doi: 10.1021/acs.jcim.0c01441. Epub 2021 Mar 31.

Abstract

Antibiotic resistance is a critical public health problem. Each year ∼2.8 million resistant infections lead to more than 35 000 deaths in the U.S. alone. Antimicrobial peptides (AMPs) show promise in treating resistant infections. However, applications of known AMPs have encountered issues in development, production, and shelf-life. To drive the development of AMP-based treatments, it is necessary to create design approaches with higher precision and selectivity toward resistant targets. Previously, we developed AMPGAN and obtained proof-of-concept evidence for the generative approach to design AMPs with experimental validation. Building on the success of AMPGAN, we present AMPGAN v2, a bidirectional conditional generative adversarial network (BiCGAN)-based approach for rational AMP design. AMPGAN v2 uses generator-discriminator dynamics to learn data-driven priors and controls generation using conditioning variables. The bidirectional component, implemented using a learned encoder to map data samples into the latent space of the generator, aids iterative manipulation of candidate peptides. These elements allow AMPGAN v2 to generate candidates that are novel, diverse, and tailored for specific applications, making it an efficient AMP design tool.

摘要

抗生素耐药性是一个严重的公共卫生问题。仅在美国,每年就有约 280 万例耐药感染导致超过 3.5 万人死亡。抗菌肽 (AMPs) 在治疗耐药感染方面显示出前景。然而,已知 AMPs 的应用在开发、生产和保质期方面遇到了问题。为了推动基于 AMP 的治疗方法的发展,有必要创建针对耐药靶标具有更高精度和选择性的设计方法。此前,我们开发了 AMPGAN ,并通过实验验证获得了针对 AMP 设计的生成方法的概念验证证据。在 AMPGAN 的成功基础上,我们提出了 AMPGAN v2 ,这是一种基于双向条件生成对抗网络 (BiCGAN) 的合理 AMP 设计方法。AMPGAN v2 使用生成器-判别器动力学来学习数据驱动的先验知识,并使用条件变量来控制生成。双向组件使用学习到的编码器将数据样本映射到生成器的潜在空间,有助于迭代地操作候选肽。这些元素使 AMPGAN v2 能够生成新颖、多样化且针对特定应用量身定制的候选肽,使其成为一种高效的 AMP 设计工具。

相似文献

1
AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides.AMPGAN v2:基于机器学习的抗菌肽设计。
J Chem Inf Model. 2021 May 24;61(5):2198-2207. doi: 10.1021/acs.jcim.0c01441. Epub 2021 Mar 31.
9
Detecting antimicrobial peptides by exploring the mutual information of their sequences.通过探索序列的互信息来检测抗菌肽。
J Biomol Struct Dyn. 2020 Oct;38(17):5037-5043. doi: 10.1080/07391102.2019.1695667. Epub 2019 Dec 18.
10
Computational Methods and Tools in Antimicrobial Peptide Research.计算方法和工具在抗菌肽研究中的应用。
J Chem Inf Model. 2021 Jul 26;61(7):3172-3196. doi: 10.1021/acs.jcim.1c00175. Epub 2021 Jun 24.

引用本文的文献

5
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.
8
Novel Antibacterial Approaches and Therapeutic Strategies.新型抗菌方法与治疗策略
Antibiotics (Basel). 2025 Apr 15;14(4):404. doi: 10.3390/antibiotics14040404.

本文引用的文献

1
Generating functional protein variants with variational autoencoders.利用变分自动编码器生成功能性蛋白质变体。
PLoS Comput Biol. 2021 Feb 26;17(2):e1008736. doi: 10.1371/journal.pcbi.1008736. eCollection 2021 Feb.
10
UniProt: a worldwide hub of protein knowledge.UniProt:蛋白质知识的全球枢纽。
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验