Suppr超能文献

基于贝叶斯网络的概率模型用于预测灌流和分批补料细胞培养中的抗体糖基化。

Probabilistic model by Bayesian network for the prediction of antibody glycosylation in perfusion and fed-batch cell cultures.

机构信息

Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden.

AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

Biotechnol Bioeng. 2021 Sep;118(9):3447-3459. doi: 10.1002/bit.27769. Epub 2021 May 3.

Abstract

Glycosylation is a critical quality attribute of therapeutic monoclonal antibodies (mAbs). The glycan pattern can have a large impact on the immunological functions, serum half-life and stability. The medium components and cultivation parameters are known to potentially influence the glycosylation profile. Mathematical modelling provides a strategy for rational design and control of the upstream bioprocess. However, the kinetic models usually contain a very large number of unknown parameters, which limit their practical applications. In this article, we consider the metabolic network of N-linked glycosylation as a Bayesian network (BN) and calculate the fluxes of the glycosylation process as joint probability using the culture parameters as inputs. The modelling approach is validated with data of different Chinese hamster ovary cell cultures in pseudo perfusion, perfusion, and fed batch cultures, all showing very good predictive capacities. In cases where a large number of cultivation parameters is available, it is shown here that principal components analysis can efficiently be employed for a dimension reduction of the inputs compared to Pearson correlation analysis and feature importance by decision tree. The present study demonstrates that BN model can be a powerful tool in upstream process and medium development for glycoprotein productions.

摘要

糖基化是治疗性单克隆抗体(mAbs)的关键质量属性。聚糖模式对免疫功能、血清半衰期和稳定性有很大影响。已知培养基成分和培养参数可能会影响糖基化谱。数学建模为上游生物工艺的合理设计和控制提供了一种策略。然而,动力学模型通常包含大量未知参数,这限制了它们的实际应用。在本文中,我们将 N 连接糖基化的代谢网络视为贝叶斯网络(BN),并使用培养参数作为输入,通过联合概率计算糖基化过程的通量。该建模方法通过不同中国仓鼠卵巢细胞在假性灌注、灌注和分批补料培养中的数据进行了验证,所有结果均显示出非常好的预测能力。在有大量培养参数的情况下,与 Pearson 相关分析和决策树的特征重要性相比,本文表明主成分分析可有效地用于输入的降维。本研究表明,BN 模型可以成为糖蛋白生产中上游工艺和培养基开发的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验