Suppr超能文献

面向市场的岗位技能评估与协同组合神经网络。

Market-oriented job skill valuation with cooperative composition neural network.

机构信息

Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.

Baidu Talent Intelligence Center, Baidu Inc., Beijing, China.

出版信息

Nat Commun. 2021 Mar 31;12(1):1992. doi: 10.1038/s41467-021-22215-y.

Abstract

The value assessment of job skills is important for companies to select and retain the right talent. However, there are few quantitative ways available for this assessment. Therefore, we propose a data-driven solution to assess skill value from a market-oriented perspective. Specifically, we formulate the task of job skill value assessment as a Salary-Skill Value Composition Problem, where each job position is regarded as the composition of a set of required skills attached with the contextual information of jobs, and the job salary is assumed to be jointly influenced by the context-aware value of these skills. Then, we propose an enhanced neural network with cooperative structure, namely Salary-Skill Composition Network (SSCN), to separate the job skills and measure their value based on the massive job postings. Experiments show that SSCN can not only assign meaningful value to job skills, but also outperforms benchmark models for job salary prediction.

摘要

工作技能的价值评估对于公司选拔和保留合适的人才非常重要。然而,目前评估工作技能价值的定量方法较少。因此,我们提出了一种数据驱动的解决方案,从面向市场的角度评估技能价值。具体来说,我们将工作技能价值评估任务形式化为薪资-技能价值构成问题,其中每个工作职位被视为一组所需技能的组合,附加工作的上下文信息,而工作薪资被假定为受这些技能的上下文感知价值的共同影响。然后,我们提出了一种具有合作结构的增强神经网络,即薪资-技能构成网络(SSCN),基于海量职位发布信息来分离工作技能并衡量其价值。实验表明,SSCN 不仅可以为工作技能赋予有意义的价值,而且在工作薪资预测方面优于基准模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d6/8012576/2e6e2decd04c/41467_2021_22215_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验