al-Obeidi A M, Light A
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907.
J Biol Chem. 1988 Jun 25;263(18):8642-5.
Size-exclusion high performance liquid chromatography was used to compare the Stokes radius of the mixed disulfide of trypsinogen refolded for 10 min with the Stokes radius of denatured trypsinogen in high concentrations of urea. After folding for 10 min, rechromatography of a collection of sequential fractions of an initial separation showed that the fractions display microheterogeneity as seen in the value of the Stokes radius of each fraction. These intermediate species differed in their Stokes radius, and each had a globular structure cross-linked by disulfide bonds. In contrast, when trypsinogen with the native disulfides intact was equilibrated at different concentrations of urea (0-8 M), a progressive increase in Stokes radius was observed with extent of unfolding. Rechromatography of a series of fractions collected at a specific urea concentration showed that each had the same Stokes radius as the fraction in the initial separation. Urea-denatured trypsinogen and partially refolded trypsinogen must therefore differ in the disulfide pairing that links regions of the polypeptide chain. These observations support the suggestion that non-native disulfide bonds are responsible for the many stable conformations that form early in the folding of the mixed disulfide of trypsinogen (Light, A., and Higaki, J.N. (1987) Biochemistry 26, 5556-5564). These intermediates initially are loose structures (large Stokes radius) that become more compact with time (decreasing Stokes radius). The intermediates must therefore undergo a continuing disulfide interchange until native disulfides form late in the process when the stable conformation of the native molecule is reached.
采用尺寸排阻高效液相色谱法,比较了复性10分钟的胰蛋白酶原混合二硫键的斯托克斯半径与高浓度尿素中变性胰蛋白酶原的斯托克斯半径。折叠10分钟后,对初始分离的一系列连续馏分进行重新色谱分析,结果表明,各馏分的斯托克斯半径值显示出微不均一性。这些中间物种的斯托克斯半径不同,且每个都具有由二硫键交联的球状结构。相比之下,当天然二硫键完整的胰蛋白酶原在不同浓度的尿素(0 - 8 M)中平衡时,随着展开程度的增加,观察到斯托克斯半径逐渐增大。对在特定尿素浓度下收集的一系列馏分进行重新色谱分析表明,每个馏分的斯托克斯半径与初始分离中的馏分相同。因此,尿素变性的胰蛋白酶原和部分复性的胰蛋白酶原在连接多肽链区域的二硫键配对上必定不同。这些观察结果支持了这样的观点,即非天然二硫键是胰蛋白酶原混合二硫键折叠早期形成的许多稳定构象的原因(莱特,A.,和日高,J.N.(1987年)《生物化学》26卷,5556 - 5564页)。这些中间体最初是松散结构(斯托克斯半径大),随着时间推移会变得更加紧凑(斯托克斯半径减小)。因此,中间体必须经历持续的二硫键交换,直到在过程后期形成天然二硫键,此时达到天然分子的稳定构象。