Suppr超能文献

用于构建肝细胞癌患者免疫遗传模型的机器学习

Machine Learning for Building Immune Genetic Model in Hepatocellular Carcinoma Patients.

作者信息

Liu Jun, Chen Zheng, Li Wenli

机构信息

Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China.

Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China.

出版信息

J Oncol. 2021 Mar 17;2021:6676537. doi: 10.1155/2021/6676537. eCollection 2021.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is the leading liver cancer with special immune microenvironment, which played vital roles in tumor relapse and poor drug responses. In this study, we aimed to explore the prognostic immune signatures in HCC and tried to construct an immune-risk model for patient evaluation.

METHODS

RNA sequencing profiles of HCC patients were collected from the cancer genome Atlas (TCGA), international cancer genome consortium (ICGC), and gene expression omnibus (GEO) databases (GSE14520). Differentially expressed immune genes, derived from ImmPort database and MSigDB signaling pathway lists, between tumor and normal tissues were analyzed with Limma package in environment. Univariate Cox regression was performed to find survival-related immune genes in TCGA dataset, and in further random forest algorithm analysis, significantly changed immune genes were used to generate a multivariate Cox model to calculate the corresponding immune-risk score. The model was examined in the other two datasets with recipient operation curve (ROC) and survival analysis. Risk effects of immune-risk score and clinical characteristics of patients were individually evaluated, and significant factors were then used to generate a nomogram.

RESULTS

There were 52 downregulated and 259 upregulated immune genes between tumor and relatively normal tissues, and the final immune-risk model (based on SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV and MAP4K2) can better differentiate patients into high and low immune-risk subpopulations, in which high score patients showed worse outcomes after resection ( < 0.05). The differentially enriched pathways between the two groups were mainly about cell proliferation and cytokine production, and calculated immune-risk score was also highly correlated with immune infiltration levels. The nomogram, constructed with immune-risk score and tumor stages, showed high accuracy and clinical benefits in prediction of 1-, 3- and 5-year overall survival, which is useful in clinical practice.

CONCLUSION

The immune-risk model, based on expression of SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV, and MAP4K2, can better differentiate patients into high and low immune-risk groups. Combined nomogram, using immune-risk score and tumor stages, could make accurate prediction of 1-, 3- and 5-year survival in HCC patients.

摘要

背景

肝细胞癌(HCC)是主要的肝癌类型,具有特殊的免疫微环境,在肿瘤复发和药物反应不佳中起重要作用。在本研究中,我们旨在探索HCC的预后免疫特征,并尝试构建免疫风险模型用于患者评估。

方法

从癌症基因组图谱(TCGA)、国际癌症基因组联盟(ICGC)和基因表达综合数据库(GEO)(GSE14520)收集HCC患者的RNA测序数据。利用Limma软件包在R环境中分析来自ImmPort数据库和MSigDB信号通路列表的肿瘤组织与正常组织之间差异表达的免疫基因。在TCGA数据集中进行单因素Cox回归以寻找与生存相关的免疫基因,在进一步的随机森林算法分析中,使用显著变化的免疫基因生成多因素Cox模型以计算相应的免疫风险评分。在另外两个数据集中使用受试者操作特征曲线(ROC)和生存分析对该模型进行检验。分别评估免疫风险评分和患者临床特征的风险效应,然后使用显著因素生成列线图。

结果

肿瘤组织与相对正常组织之间有52个免疫基因下调和259个免疫基因上调,最终的免疫风险模型(基于SPP1、BRD8、NDRG1、KITLG、HSPA4、TRAF3、ITGAV和MAP4K2)能够更好地将患者分为高免疫风险和低免疫风险亚组,其中高分患者切除术后预后较差(P<0.05)。两组之间差异富集的通路主要涉及细胞增殖和细胞因子产生,计算得到的免疫风险评分也与免疫浸润水平高度相关。由免疫风险评分和肿瘤分期构建的列线图在预测1年、3年和5年总生存率方面显示出高准确性和临床实用性,对临床实践具有指导意义。

结论

基于SPP1、BRD8、NDRG1、KITLG、HSPA4、TRAF3、ITGAV和MAP4K2表达的免疫风险模型能够更好地将患者分为高免疫风险和低免疫风险组。结合免疫风险评分和肿瘤分期的列线图能够准确预测HCC患者的1年、3年和5年生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/180c/7994091/df3bcbcbfb90/JO2021-6676537.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验