Bock Samantha L, Hale Matthew D, Leri Faith M, Wilkinson Philip M, Rainwater Thomas R, Parrott Benjamin B
Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
Savannah River Ecology Laboratory, Aiken, SC 29802, USA.
Integr Org Biol. 2020 Oct 7;2(1):obaa033. doi: 10.1093/iob/obaa033. eCollection 2020.
An organism's ability to integrate transient environmental cues experienced during development into molecular and physiological responses forms the basis for adaptive shifts in phenotypic trajectories. During temperature-dependent sex determination (TSD), thermal cues during discrete periods in development coordinate molecular changes that ultimately dictate sexual fate and contribute to patterns of inter- and intra-sexual variation. How these mechanisms interface with dynamic thermal environments in nature remain largely unknown. By deploying thermal loggers in wild nests of the American alligator () over two consecutive breeding seasons, we observed that 80% of nests exhibit both male- and female-promoting thermal cues during the thermosensitive period, and of these nests, all exhibited both male- and female-promoting temperatures within the span of a single day. These observations raise a critical question-how are opposing environmental cues integrated into sexually dimorphic transcriptional programs across short temporal scales? To address this question, alligator embryos were exposed to fluctuating temperatures based on nest thermal profiles and sampled over the course of a daily thermal fluctuation. We examined the expression dynamics of upstream genes in the temperature-sensing pathway and find that post-transcriptional alternative splicing and transcript abundance of epigenetic modifier genes and respond rapidly to thermal fluctuations while transcriptional changes of downstream effector genes, and , occur on a delayed timescale. Our findings reveal how the basic mechanisms of TSD operate in an ecologically relevant context. We present a hypothetical hierarchical model based on our findings as well as previous studies, in which temperature-sensitive alternative splicing incrementally influences the epigenetic landscape to affect the transcriptional activity of key sex-determining genes.
生物体将发育过程中经历的短暂环境线索整合到分子和生理反应中的能力,构成了表型轨迹适应性转变的基础。在温度依赖性性别决定(TSD)过程中,发育过程中离散时期的热线索协调分子变化,最终决定性别命运,并导致性别间和性别内变异模式的形成。这些机制在自然环境中如何与动态热环境相互作用,在很大程度上仍然未知。通过在连续两个繁殖季节的美国短吻鳄野生巢穴中部署热记录仪,我们观察到80%的巢穴在温度敏感期同时呈现促进雄性和雌性发育的热线索,并且在这些巢穴中,所有巢穴在一天的时间跨度内都呈现出促进雄性和雌性发育的温度。这些观察结果提出了一个关键问题——在短时间尺度上,相反的环境线索是如何整合到两性异形的转录程序中的?为了解决这个问题,将短吻鳄胚胎根据巢穴热剖面暴露于波动温度下,并在每日热波动过程中进行采样。我们研究了温度传感途径中上游基因的表达动态,发现表观遗传修饰基因 和 的转录后可变剪接和转录本丰度对热波动反应迅速,而下游效应基因 和 的转录变化则在延迟的时间尺度上发生。我们的研究结果揭示了TSD的基本机制在生态相关背景下是如何运作的。我们根据我们的研究结果以及先前的研究提出了一个假设的层次模型,其中温度敏感的可变剪接逐渐影响表观遗传景观,以影响关键性别决定基因的转录活性。