Xu Zhanwen, Lin Jiaping, Zhang Liangshun, Wang Liquan
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Nano Lett. 2021 Apr 14;21(7):2982-2988. doi: 10.1021/acs.nanolett.1c00122. Epub 2021 Apr 1.
Directing nanoparticles into ordered organization in polymer matrix to improve macroscopic properties of nanocomposites remains a challenge. Herein, by means of theoretical simulations, we show the high permittivity of hybrid nanostructures designed with mixtures of AB block copolymer-grafted nanoparticles and lamella-forming AC diblock copolymers. The grafted nanoparticles self-assemble into parallel stripes or highly ordered networks in the lamellae of the AC diblock copolymers. The ordered nanoparticle networks, including honeycomb-like and kagomé networks, provide bending and conductive pathways for concentrating electric fields, which results in the improvement of the permittivity. We envisage that this strategy will open a gateway to prepare hierarchically ordered functional nanocomposites with distinctive dielectric properties.