Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
Université de Lorraine, CNRS, INSERM, IBSLOR, Nancy, France.
Methods Mol Biol. 2021;2300:251-266. doi: 10.1007/978-1-0716-1386-3_19.
Many RNA architectures were discovered to be involved in a wide range of essential biological processes in all organisms from carrying genetic information to gene expression regulation. The remarkable ability of RNAs to adopt various architectures depending on their environment enables the achievement of their myriads of biological functions. Nuclear Magnetic Resonance (NMR) is a powerful technique to investigate both their structure and dynamics. NMR is also a key tool for studying interactions between RNAs and their numerous partners such as small molecules, ions, proteins, or other nucleic acids.In this chapter, to illustrate the use of NMR for 3D structure determination of small noncoding RNA, we describe detailed methods that we used for the yeast C/D box small nucleolar RNA U14 from sample preparation to 3D structure calculation.
许多 RNA 结构被发现参与了从携带遗传信息到基因表达调控的所有生物的广泛的基本生物过程。RNA 具有根据环境改变结构的显著能力,这使得它们能够实现其众多的生物学功能。核磁共振(NMR)是研究其结构和动力学的强大技术。NMR 也是研究 RNA 与其众多伴侣(如小分子、离子、蛋白质或其他核酸)之间相互作用的关键工具。在本章中,为了说明 NMR 在小非编码 RNA 三维结构测定中的应用,我们描述了详细的方法,这些方法包括从样品制备到三维结构计算,用于酵母 C/D 盒小核仁 RNA U14。