Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany (F.M.).
Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA (F.M.).
Circ Res. 2021 Apr 2;128(7):1080-1099. doi: 10.1161/CIRCRESAHA.121.318091. Epub 2021 Apr 1.
In the past decade, efforts to improve blood pressure control have looked beyond conventional approaches of lifestyle modification and drug therapy to embrace interventional therapies. Based upon animal and human studies clearly demonstrating a key role for the sympathetic nervous system in the etiology of hypertension, the newer technologies that have emerged are predominantly aimed at neuromodulation of peripheral nervous system targets. These include renal denervation, baroreflex activation therapy, endovascular baroreflex amplification therapy, carotid body ablation, and pacemaker-mediated programmable hypertension control. Of these, renal denervation is the most mature, and with a recent series of proof-of-concept trials demonstrating the safety and efficacy of radiofrequency and more recently ultrasound-based renal denervation, this technology is poised to become available as a viable treatment option for hypertension in the foreseeable future. With regard to baroreflex activation therapy, endovascular baroreflex amplification, carotid body ablation, and programmable hypertension control, these are developing technologies for which more human data are required. Importantly, central nervous system control of the circulation remains a poorly understood yet vital component of the hypertension pathway and mandates further investigation. Technology to improve blood pressure control through deep brain stimulation of key cardiovascular control territories is, therefore, of interest. Furthermore, alternative nonsympathomodulatory intervention targeting the hemodynamics of the circulation may also be worth exploring for patients in whom sympathetic drive is less relevant to hypertension perpetuation. Herein, we review the aforementioned technologies with an emphasis on the preclinical data that underpin their rationale and the human evidence that supports their use.
在过去的十年中,人们努力改善血压控制,不仅关注生活方式改变和药物治疗等传统方法,还采用了介入治疗。基于明确表明交感神经系统在高血压发病机制中起关键作用的动物和人体研究,新兴的新技术主要针对外周神经系统靶点的神经调节。这些技术包括肾去神经支配、压力感受器激活治疗、血管内压力感受器放大治疗、颈动脉体消融和起搏器介导的可编程高血压控制。其中,肾去神经支配技术最为成熟,最近一系列概念验证试验证明了射频和最近的基于超声的肾去神经支配的安全性和有效性,这项技术有望在可预见的未来成为高血压的一种可行治疗选择。至于压力感受器激活治疗、血管内压力感受器放大、颈动脉体消融和可编程高血压控制,这些都是正在发展的技术,需要更多的人体数据。重要的是,循环的中枢神经系统控制仍然是高血压途径中一个理解甚少但至关重要的组成部分,需要进一步研究。通过对关键心血管控制区域进行深部脑刺激来改善血压控制的技术因此引起了人们的兴趣。此外,针对循环血液动力学的替代非交感神经调节干预措施也可能值得探索,对于那些交感神经驱动与高血压持续存在相关性较低的患者。本文重点介绍了这些技术的临床前数据,这些数据支持了它们的基本原理,以及支持其应用的人体证据。