Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America.
Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America.
PLoS Comput Biol. 2021 Apr 1;17(4):e1008889. doi: 10.1371/journal.pcbi.1008889. eCollection 2021 Apr.
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
细菌利用各种各样的内源性细胞壁水解酶(即自溶酶),在细胞分裂、生物膜形成和程序性死亡等过程中重塑细胞壁。我们在这里系统地研究这些酶的组成,以深入了解它们相关的生物学过程、通过化疗破坏它们的潜在方法,以及利用它们作为重组抗菌生物疗法的策略。为此,我们开发了 LEDGOs(通过生物体分组的裂解酶结构域),这是一个创建和分析自溶酶序列、组成结构域注释以及多结构域酶结构模式数据库的流水线,这些酶模式整合了肽聚糖结合和降解功能。我们将 LEDGOs 应用于八种病原菌,包括革兰氏阴性菌鲍曼不动杆菌、肺炎克雷伯菌、淋病奈瑟菌和铜绿假单胞菌;以及革兰氏阳性菌艰难梭菌、屎肠球菌、金黄色葡萄球菌和肺炎链球菌。我们对这些病原体的自溶酶谱的分析揭示了它们关键结构域构建块和结构的共性和差异,包括多结构域酶中结构域之间的相关性和优选顺序、具有潜在互补识别模式的同源结合结构域的重复出现,以及序列相似性模式表明相关结构域之间功能特异性可能存在差异。我们还在裂解酶内鉴定了各种未注释的序列区域,这些区域本身可能包含具有重要功能的新结构域。