Suppr超能文献

Argonaute-CLIP 描绘了具有多种功能的 RNAi 网络,在埃及伊蚊中,它是人类病毒的主要载体。

Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses.

机构信息

Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.

Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.

出版信息

Cell Host Microbe. 2021 May 12;29(5):834-848.e13. doi: 10.1016/j.chom.2021.03.004. Epub 2021 Mar 31.

Abstract

Argonaute (AGO) proteins bind small RNAs to silence complementary RNA transcripts, and they are central to RNA interference (RNAi). RNAi is critical for regulation of gene expression and antiviral defense in Aedes aegypti mosquitoes, which transmit Zika, chikungunya, dengue, and yellow fever viruses. In mosquitoes, AGO1 mediates miRNA interactions, while AGO2 mediates siRNA interactions. We applied AGO-crosslinking immunoprecipitation (AGO-CLIP) for both AGO1 and AGO2, and we developed a universal software package for CLIP analysis (CLIPflexR), identifying 230 small RNAs and 5,447 small RNA targets that comprise a comprehensive RNAi network map in mosquitoes. RNAi network maps predicted expression levels of small RNA targets in specific tissues. Additionally, this resource identified unexpected, context-dependent AGO2 target preferences, including endogenous viral elements and 3'UTRs. Finally, contrary to current thinking, mosquito AGO2 repressed imperfect targets. These findings expand our understanding of small RNA networks and have broad implications for the study of antiviral RNAi.

摘要

Argonaute (AGO) 蛋白结合小 RNA 来沉默互补的 RNA 转录物,它们是 RNA 干扰 (RNAi) 的核心。RNAi 对于调节埃及伊蚊中的基因表达和抗病毒防御至关重要,埃及伊蚊传播寨卡病毒、基孔肯雅热病毒、登革热病毒和黄热病病毒。在蚊子中,AGO1 介导 miRNA 相互作用,而 AGO2 介导 siRNA 相互作用。我们应用 AGO 交联免疫沉淀 (AGO-CLIP) 对 AGO1 和 AGO2 进行了研究,并开发了一种用于 CLIP 分析的通用软件包 (CLIPflexR),鉴定了 230 种小 RNA 和 5447 种小 RNA 靶标,构成了蚊子中全面的 RNAi 网络图谱。RNAi 网络图谱预测了特定组织中小 RNA 靶标的表达水平。此外,该资源还确定了意想不到的、依赖上下文的 AGO2 靶标偏好,包括内源性病毒元件和 3'UTR。最后,与当前的观点相反,蚊子 AGO2 抑制了不完美的靶标。这些发现扩展了我们对小 RNA 网络的理解,并对抗病毒 RNAi 的研究具有广泛的意义。

相似文献

1
Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses.
Cell Host Microbe. 2021 May 12;29(5):834-848.e13. doi: 10.1016/j.chom.2021.03.004. Epub 2021 Mar 31.
3
An -Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections.
Viruses. 2021 Jun 3;13(6):1066. doi: 10.3390/v13061066.
4
Antiviral RNAi Response against the Insect-Specific Agua Salud Alphavirus.
mSphere. 2022 Feb 23;7(1):e0100321. doi: 10.1128/msphere.01003-21. Epub 2022 Feb 16.
5
Aedes aegypti uses RNA interference in defense against Sindbis virus infection.
BMC Microbiol. 2008 Mar 17;8:47. doi: 10.1186/1471-2180-8-47.
6
Rapid intraspecific evolution of miRNA and siRNA genes in the mosquito Aedes aegypti.
PLoS One. 2012;7(9):e44198. doi: 10.1371/journal.pone.0044198. Epub 2012 Sep 21.
7
Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection.
Insect Biochem Mol Biol. 2019 Jun;109:13-23. doi: 10.1016/j.ibmb.2019.04.008. Epub 2019 Apr 5.
8
Characterization of the Zika virus induced small RNA response in Aedes aegypti cells.
PLoS Negl Trop Dis. 2017 Oct 17;11(10):e0006010. doi: 10.1371/journal.pntd.0006010. eCollection 2017 Oct.
9
Zooming in on targets of mosquito small RNAs.
Trends Parasitol. 2021 Aug;37(8):687-689. doi: 10.1016/j.pt.2021.06.002. Epub 2021 Jun 16.
10
Argonaute 2 Suppresses Japanese Encephalitis Virus Infection in Aedes aegypti.
Jpn J Infect Dis. 2017 Jan 24;70(1):38-44. doi: 10.7883/yoken.JJID.2015.671. Epub 2016 May 9.

引用本文的文献

本文引用的文献

1
A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons.
Genome Res. 2021 Mar;31(3):512-528. doi: 10.1101/gr.265157.120. Epub 2021 Jan 8.
2
Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae.
PLoS Genet. 2020 Apr 27;16(4):e1008765. doi: 10.1371/journal.pgen.1008765. eCollection 2020 Apr.
4
The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes.
Curr Issues Mol Biol. 2020;34:13-30. doi: 10.21775/cimb.034.013. Epub 2019 Jun 6.
5
The EMBL-EBI search and sequence analysis tools APIs in 2019.
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641. doi: 10.1093/nar/gkz268.
6
Global identification of functional microRNA-mRNA interactions in Drosophila.
Nat Commun. 2019 Apr 9;10(1):1626. doi: 10.1038/s41467-019-09586-z.
7
Transposon silencing in the female germline is essential for genome stability in progeny embryos.
Life Sci Alliance. 2018 Sep 17;1(5):e201800179. doi: 10.26508/lsa.201800179. eCollection 2018 Oct.
8
Improved reference genome of Aedes aegypti informs arbovirus vector control.
Nature. 2018 Nov;563(7732):501-507. doi: 10.1038/s41586-018-0692-z. Epub 2018 Nov 14.
9
miRBase: from microRNA sequences to function.
Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. doi: 10.1093/nar/gky1141.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验