Suppr超能文献

自动微血管血流分析软件AVA 4的评估:一项验证研究。

Evaluation of automated microvascular flow analysis software AVA 4: a validation study.

作者信息

Guay Christian S, Khebir Mariam, Shiva Shahiri T, Szilagyi Ariana, Cole Erin Elizabeth, Simoneau Gabrielle, Badawy Mohamed

机构信息

Department of Anesthesiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St Louis, MO, 63110, USA.

Department of Anesthesia and Critical Care Medicine, The Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Room 554, Montreal, QC, H3A 2B4, Canada.

出版信息

Intensive Care Med Exp. 2021 Apr 2;9(1):15. doi: 10.1186/s40635-021-00380-0.

Abstract

BACKGROUND

Real-time automated analysis of videos of the microvasculature is an essential step in the development of research protocols and clinical algorithms that incorporate point-of-care microvascular analysis. In response to the call for validation studies of available automated analysis software by the European Society of Intensive Care Medicine, and building on a previous validation study in sheep, we report the first human validation study of AVA 4.

METHODS

Two retrospective perioperative datasets of human microcirculation videos (P1 and P2) and one prospective healthy volunteer dataset (V1) were used in this validation study. Video quality was assessed using the modified Microcirculation Image Quality Selection (MIQS) score. Videos were initially analyzed with (1) AVA software 3.2 by two experienced investigators using the gold standard semi-automated method, followed by an analysis with (2) AVA automated software 4.1. Microvascular variables measured were perfused vessel density (PVD), total vessel density (TVD), and proportion of perfused vessels (PPV). Bland-Altman analysis and intraclass correlation coefficients (ICC) were used to measure agreement between the two methods. Each method's ability to discriminate between microcirculatory states before and after induction of general anesthesia was assessed using paired t-tests.

RESULTS

Fifty-two videos from P1, 128 videos from P2 and 26 videos from V1 met inclusion criteria for analysis. Correlational analysis and Bland-Altman analysis revealed poor agreement and no correlation between AVA 4.1 and AVA 3.2. Following the induction of general anesthesia, TVD and PVD measured using AVA 3.2 increased significantly for P1 (p < 0.05) and P2 (p < 0.05). However, these changes could not be replicated with the data generated by AVA 4.1.

CONCLUSIONS

AVA 4.1 is not a suitable tool for research or clinical purposes at this time. Future validation studies of automated microvascular flow analysis software should aim to measure the new software's agreement with the gold standard, its ability to discriminate between clinical states and the quality thresholds at which its performance becomes unacceptable.

摘要

背景

对微血管视频进行实时自动分析是制定包含即时微血管分析的研究方案和临床算法的关键步骤。为响应欧洲重症监护医学学会对现有自动分析软件进行验证研究的呼吁,并基于之前在绵羊身上进行的验证研究,我们报告了AVA 4的首次人体验证研究。

方法

本验证研究使用了两个关于人体微循环视频的回顾性围手术期数据集(P1和P2)以及一个前瞻性健康志愿者数据集(V1)。使用改良的微循环图像质量选择(MIQS)评分评估视频质量。视频首先由两名经验丰富的研究人员使用金标准半自动方法通过(1)AVA软件3.2进行分析,随后使用(2)AVA自动软件4.1进行分析。测量的微血管变量包括灌注血管密度(PVD)、总血管密度(TVD)和灌注血管比例(PPV)。采用Bland-Altman分析和组内相关系数(ICC)来衡量两种方法之间的一致性。使用配对t检验评估每种方法区分全身麻醉诱导前后微循环状态的能力。

结果

来自P1的52个视频、来自P2的128个视频和来自V1的26个视频符合分析的纳入标准。相关性分析和Bland-Altman分析显示,AVA 4.1与AVA 3.2之间一致性较差且无相关性。全身麻醉诱导后,使用AVA 3.2测量的P1(p<0.05)和P2(p<0.05)的TVD和PVD显著增加。然而,这些变化无法用AVA 4.1生成的数据复制。

结论

目前,AVA 4.1不适用于研究或临床目的。未来对自动微血管血流分析软件的验证研究应旨在测量新软件与金标准的一致性、区分临床状态的能力以及其性能变得不可接受时的质量阈值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77bf/8017044/863a33dc5885/40635_2021_380_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验