Suppr超能文献

微观结构形貌对超疏水表面上液滴斜向撞击动力学的影响。

Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces.

作者信息

Aboud Damon G K, Kietzig Anne-Marie

机构信息

Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5 Canada.

出版信息

Langmuir. 2021 Apr 20;37(15):4678-4689. doi: 10.1021/acs.langmuir.1c00472. Epub 2021 Apr 2.

Abstract

This report investigates the influence of microstructure topography on the restitution coefficient, maximum spreading diameter, and contact time of oblique drop impacts on superhydrophobic surfaces. The five surfaces tested allow for comparison of open- versus closed-cell structures, feature size and spacing, and hierarchical versus nanoscale-only surface structures. By decoupling the restitution coefficient into a normal (ε) and tangential component (ε), it is demonstrated that both ε and ε are largely independent of the microstructure topography. Instead, the restitution coefficient is governed almost exclusively by the normal Weber number. Next, a new model is presented that relates the maximum spreading diameter to an adhesion coefficient that characterizes the overall adhesive properties of the superhydrophobic microstructure during drop rebounding. Through this analysis, we discovered that surface geometries with greater microstructure roughness (i.e., overall surface area) promote a higher maximum spreading diameter than flatter geometries. Furthermore, the contact time of drop impacts on flat surfaces is positively correlated with the impact velocity due to penetration of the liquid into the porous nanostructure. However, this trend reverses for oblique impacts due to the presence of stretched rebounding behavior. Finally, substrates patterned with sparse pillar microstructures can exhibit pancake bouncing behavior, resulting in extremely low contact times. This unique bouncing mechanism also significantly influences the restitution coefficient and spreading diameter of oblique impacts.

摘要

本报告研究了微观结构形貌对超疏水表面上斜向液滴撞击的恢复系数、最大铺展直径和接触时间的影响。所测试的五个表面可用于比较开孔与闭孔结构、特征尺寸和间距,以及分级结构与仅纳米级表面结构。通过将恢复系数解耦为法向分量(ε)和切向分量(ε),结果表明ε和ε在很大程度上与微观结构形貌无关。相反,恢复系数几乎完全由法向韦伯数决定。接下来,提出了一个新模型,该模型将最大铺展直径与一个粘附系数相关联,该粘附系数表征了液滴反弹过程中超疏水微观结构的整体粘附特性。通过该分析,我们发现具有更大微观结构粗糙度(即总表面积)的表面几何形状比更平坦的几何形状能促进更高的最大铺展直径。此外,由于液体渗入多孔纳米结构,液滴在平面上的接触时间与撞击速度呈正相关。然而,由于存在拉伸反弹行为,这种趋势在斜向撞击时会逆转。最后,具有稀疏柱状微结构图案的基底可表现出薄饼弹跳行为,并导致极低的接触时间。这种独特的弹跳机制也显著影响斜向撞击的恢复系数和铺展直径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验