Chen Yongwei, Idrees Karam B, Son Florencia A, Wang Xingjie, Chen Zhijie, Xia Qibin, Li Zhong, Zhang Xuan, Farha Omar K
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16820-16827. doi: 10.1021/acsami.1c00061. Epub 2021 Apr 2.
Flexible metal-organic frameworks (MOFs) are of high interest as smart programmable materials for gas sorption due to their unique structural changes triggered by external stimuli. Owing to this property, which leads to opportunities such as maximizing deliverable gas capacity, flexible MOFs sometimes offer more advantages in sorption applications compared to their more rigid counterparts. Herein, we elucidate the effect of transition metal identity of a series of isonicotinate-based flexible MOFs, M(4-PyC) [M═Mg, Mn, and Cu; 4-PyC = 4-pyridine carboxylic acid] on the structural dynamic response to different gases (CH, CH, Xe, Kr, and SO). Isotherms at different temperatures show that CH, CH, and Xe can form sufficiently strong interactions with both Mg(4-PyC) and Mn(4-PyC) frameworks resulting in gate-opening behavior due to the rotation of the linker's pyridine ring, while Kr cannot induce this phenomenon for the two MOFs under the measured conditions. In contrast, the gate-opening behavior occurs for Cu(4-PyC) solely in the presence of CH, and no other measured gas, due to the open metal sites of Cu centers. In comparison, SO, a strong polar molecule, triggers the gate-opening effect in all three MOFs. Interestingly, a shape memory effect is observed for Cu(4-PyC) during the second SO sorption cycle. When comparing the different gate-opening pressures of each gas, we observed that the structural flexibility of the three frameworks is highly sensitive to the chemical hardness of the Lewis acidic metal ions (Mg > Mn > Cu). As a result, the gate opening behavior is observed at lower pressures for the MOFs containing weaker M-N bonds (harder metal ions), with the exception of Cu(4-PyC) toward CH. These observations reveal that different transition metals can be used to finely control the structural flexibility of the frameworks.
柔性金属有机框架材料(MOFs)作为用于气体吸附的智能可编程材料备受关注,因为它们能因外部刺激引发独特的结构变化。由于这一特性,柔性MOFs能带来如最大化可输送气体容量等机会,在吸附应用中有时比刚性更强的同类材料具有更多优势。在此,我们阐明了一系列基于异烟酸的柔性MOFs,即M(4-PyC) [M═Mg、Mn和Cu;4-PyC = 4-吡啶羧酸] 的过渡金属特性对不同气体(CH、CH、Xe、Kr和SO)结构动态响应的影响。不同温度下的等温线表明,CH、CH和Xe能与Mg(4-PyC) 和Mn(4-PyC) 框架形成足够强的相互作用,由于连接体吡啶环的旋转导致门控开启行为,而在测量条件下,Kr无法在这两种MOF中引发此现象。相比之下,由于Cu中心的开放金属位点,Cu(4-PyC) 仅在CH存在时出现门控开启行为,其他测量气体不存在此现象。相比之下,强极性分子SO在所有三种MOF中都引发了门控开启效应。有趣的是,在第二个SO吸附循环中观察到Cu(4-PyC) 具有形状记忆效应。比较每种气体的不同门控开启压力时,我们发现这三种框架的结构柔性对路易斯酸性金属离子的化学硬度高度敏感(Mg > Mn > Cu)。因此,除了Cu(4-PyC) 对CH的情况外,对于含有较弱M-N键(较硬金属离子)的MOF,在较低压力下观察到门控开启行为。这些观察结果表明,不同的过渡金属可用于精细控制框架的结构柔性。