Suppr超能文献

膜桶是更高、更粗、内外翻转的可溶性桶。

Membrane Barrels Are Taller, Fatter, Inside-Out Soluble Barrels.

作者信息

Dhar Rik, Feehan Ryan, Slusky Joanna S G

机构信息

Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States.

Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States.

出版信息

J Phys Chem B. 2021 Apr 15;125(14):3622-3628. doi: 10.1021/acs.jpcb.1c00878. Epub 2021 Apr 2.

Abstract

Up-and-down β-barrel topology exists in both the membrane and soluble environment. By comparing features of these structurally similar proteins, we can determine what features are particular to the environment rather than the fold. Here we compare structures of membrane β-barrels to soluble β-barrels and evaluate their relative size, shape, amino acid composition, hydrophobicity, and periodicity. We find that membrane β-barrels are generally larger than soluble β-barrels, with more strands per barrel and more amino acids per strand, making them wider and taller. We also find that membrane β-barrels are inside-out soluble β-barrels. The inward region of membrane β-barrels has similar hydrophobicity to the outward region of soluble β-barrels, and the outward region of membrane β-barrels has similar hydrophobicity to the inward region of the soluble β-barrels. Moreover, even though both types of β-barrel have been assumed to have strands with amino acids that alternate in direction and hydrophobicity, we find that the membrane β-barrels have more regular alternation than soluble β-barrels. These features give insight into how membrane barrels maintain their fold and function in the membrane.

摘要

上下β桶拓扑结构同时存在于膜环境和可溶性环境中。通过比较这些结构相似的蛋白质的特征,我们可以确定哪些特征是特定于环境而非折叠结构的。在这里,我们将膜β桶的结构与可溶性β桶的结构进行比较,并评估它们的相对大小、形状、氨基酸组成、疏水性和周期性。我们发现,膜β桶通常比可溶性β桶更大,每个桶有更多的链,每条链有更多的氨基酸,使其更宽更高。我们还发现膜β桶是内翻的可溶性β桶。膜β桶的内部区域与可溶性β桶的外部区域具有相似的疏水性,膜β桶的外部区域与可溶性β桶的内部区域具有相似的疏水性。此外,尽管两种类型的β桶都被认为具有氨基酸方向和疏水性交替的链,但我们发现膜β桶比可溶性β桶具有更规则的交替。这些特征有助于深入了解膜桶如何在膜中维持其折叠结构和功能。

相似文献

1
Membrane Barrels Are Taller, Fatter, Inside-Out Soluble Barrels.
J Phys Chem B. 2021 Apr 15;125(14):3622-3628. doi: 10.1021/acs.jpcb.1c00878. Epub 2021 Apr 2.
2
β-Strand twisting/bending in soluble and transmembrane β-barrel structures.
Proteins. 2018 Dec;86(12):1231-1241. doi: 10.1002/prot.25576. Epub 2018 Nov 1.
7
Correction to "Membrane Barrels Are Taller, Fatter, Inside-Out Soluble Barrels".
J Phys Chem B. 2021 Oct 28;125(42):11784. doi: 10.1021/acs.jpcb.1c07711. Epub 2021 Oct 19.
9
Asymmetric amino acid compositions of transmembrane beta-strands.
Protein Sci. 2004 Aug;13(8):2270-4. doi: 10.1110/ps.04777304.
10
Predicting giant transmembrane β-barrel architecture.
Bioinformatics. 2012 May 15;28(10):1299-302. doi: 10.1093/bioinformatics/bts152. Epub 2012 Mar 30.

引用本文的文献

2
Evolutionary Engineering a Larger Porin Using a Loop-to-Hairpin Mechanism.
J Mol Biol. 2023 Nov 15;435(22):168292. doi: 10.1016/j.jmb.2023.168292. Epub 2023 Sep 26.
3
General features of transmembrane beta barrels from a large database.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2220762120. doi: 10.1073/pnas.2220762120. Epub 2023 Jul 11.
4
Evolutionary engineering a larger porin using a loop-to-hairpin mechanism.
bioRxiv. 2023 Sep 20:2023.06.14.544993. doi: 10.1101/2023.06.14.544993.
5
Protein Design: From the Aspect of Water Solubility and Stability.
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.
6
Colicin E1 opens its hinge to plug TolC.
Elife. 2022 Feb 24;11:e73297. doi: 10.7554/eLife.73297.
7
β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis.
Int J Mol Sci. 2021 Oct 20;22(21):11316. doi: 10.3390/ijms222111316.
8
Inward-facing glycine residues create sharp turns in β-barrel membrane proteins.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183662. doi: 10.1016/j.bbamem.2021.183662. Epub 2021 Jun 17.

本文引用的文献

1
Outer membrane protein evolution.
Curr Opin Struct Biol. 2021 Jun;68:122-128. doi: 10.1016/j.sbi.2021.01.002. Epub 2021 Jan 22.
2
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
3
The electrostatic core of the outer membrane protein X from E. coli.
Biochim Biophys Acta Biomembr. 2020 Jan 1;1862(1):183031. doi: 10.1016/j.bbamem.2019.183031. Epub 2019 Jul 30.
4
The EMBL-EBI search and sequence analysis tools APIs in 2019.
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641. doi: 10.1093/nar/gkz268.
6
Comparative Analysis of TM and Cytoplasmic β-barrel Conformations Using Joint Descriptor.
Sci Rep. 2018 Sep 21;8(1):14185. doi: 10.1038/s41598-018-32136-4.
7
Efflux Pumps Represent Possible Evolutionary Convergence onto the β-Barrel Fold.
Structure. 2018 Sep 4;26(9):1266-1274.e2. doi: 10.1016/j.str.2018.06.007. Epub 2018 Jul 26.
8
β-Strand twisting/bending in soluble and transmembrane β-barrel structures.
Proteins. 2018 Dec;86(12):1231-1241. doi: 10.1002/prot.25576. Epub 2018 Nov 1.
9
Structural and Mechanistic Insights into Protein Translocation.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:369-390. doi: 10.1146/annurev-cellbio-100616-060439. Epub 2017 May 31.
10
The β-barrel assembly machinery in motion.
Nat Rev Microbiol. 2017 Apr;15(4):197-204. doi: 10.1038/nrmicro.2016.191. Epub 2017 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验