Suppr超能文献

双成像光电子光离子符合光谱揭示碳酸二甲酯的单分子热分解机理

Double-Imaging Photoelectron Photoion Coincidence Spectroscopy Reveals the Unimolecular Thermal Decomposition Mechanism of Dimethyl Carbonate.

作者信息

Steglich Mathias, Wu Xiangkun, Bodi Andras, Hemberger Patrick

机构信息

Paul Scherrer Institute, Villigen 5232, Switzerland.

出版信息

J Phys Chem A. 2021 Apr 15;125(14):2895-2904. doi: 10.1021/acs.jpca.1c00724. Epub 2021 Apr 2.

Abstract

We studied the thermal decomposition of dimethyl carbonate (DMC, CHO) in a flash vacuum pyrolysis reactor in the 1100-1700 K range. The reaction products and intermediates were probed by vacuum ultraviolet synchrotron radiation in a photoelectron photoion coincidence (PEPICO) spectrometer to record isomer-specific photoion mass-selected threshold photoelectron (ms-TPE) spectra. Reaction pathways were explored using quantum chemical calculations, which confirmed the experimental observation that the intramolecular migration of a methyl group, yielding dimethyl ether (DME, CHO) and carbon dioxide, dominates the initial unimolecular decomposition chemistry. The role of a second potentially important channel, namely, C-O bond fission to yield methyl radicals, could not be determined experimentally due to the short lifetime of the ·CHO radical and overlapping sequential decomposition products. However, potential energy surface and microcanonical rate constant calculations predict 2 to 3 orders of magnitude lower rates for this channel than for decarboxylation to yield DME. Consequently, DMC pyrolysis shows bewilderingly similar products and product abundances as DME pyrolysis. This coincides with DMC combustion modeling studies, which found that DME is a key intermediate in the mechanism. Furthermore, we have detected traces of methyl formate and formaldehyde, produced after the hydrogen shift to the central carbon atom in DMC. Ethylene and acetylene could be established as bimolecular reaction products because their abundance depended strongly on the DMC concentration. It is intriguing to compare the decomposition of DMC with that of the structurally similar methylal (dimethoxymethane, DMM). While methanol and formaldehyde are produced in similar quantities in DMM, thanks to low-energy hydrogen-transfer reactions, the methanol channel is almost fully suppressed in DMC due to the absence of hydrogens at the central carbon atom and the thermodynamically favored decarboxylation. These new mechanistic insights may help the development of predictive combustion models for fuel additives and biofuels.

摘要

我们在1100 - 1700 K范围内的快速真空热解反应器中研究了碳酸二甲酯(DMC,CH₃OCOOCH₃)的热分解。在光电子光离子符合(PEPICO)光谱仪中,利用真空紫外同步辐射对反应产物和中间体进行探测,以记录异构体特异性光离子质量选择阈值光电子(ms - TPE)光谱。使用量子化学计算探索反应途径,这证实了实验观察结果,即甲基的分子内迁移生成二甲醚(DME,CH₃OCH₃)和二氧化碳,主导了初始单分子分解化学过程。由于·CHO自由基寿命短且分解产物有重叠序列,实验无法确定第二个潜在重要通道的作用,即C - O键断裂生成甲基自由基。然而,势能面和微正则速率常数计算预测该通道的速率比脱羧生成DME的速率低2至3个数量级。因此,DMC热解显示出与DME热解惊人相似的产物和产物丰度。这与DMC燃烧模型研究结果一致,该研究发现DME是该机理中的关键中间体。此外,我们检测到了DMC中氢转移到中心碳原子后产生的微量甲酸甲酯和甲醛。乙烯和乙炔可确定为双分子反应产物,因为它们的丰度强烈依赖于DMC浓度。将DMC的分解与结构相似的甲缩醛(二甲氧基甲烷,DMM)的分解进行比较很有趣。虽然在DMM中甲醇和甲醛的生成量相似,这得益于低能氢转移反应,但由于中心碳原子上没有氢且脱羧在热力学上更有利,甲醇通道在DMC中几乎完全被抑制。这些新的机理见解可能有助于开发用于燃料添加剂和生物燃料的预测燃烧模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验