IEEE J Biomed Health Inform. 2021 Sep;25(9):3498-3506. doi: 10.1109/JBHI.2021.3070708. Epub 2021 Sep 3.
Current clinical practice or radiomics studies of pancreatic neuroendocrine neoplasms (pNENs) require manual delineation of the lesions in computed tomography (CT) images, which is time-consuming and subjective. We used a semi-automatic deep learning (DL) method for segmentation of pNENs and verified its feasibility in radiomics analysis. This retrospective study included two datasets: Dataset 1, contrast-enhanced CT images (CECT) of 80 and 18 patients respectively collected from two centers; and Dataset 2, CECT of 56 and 16 patients respectively from two centers. A DL-based semi-automatic segmentation model was developed and validated with Dataset 1 and Dataset 2, and the segmentation results were used for radiomics analysis from which the performance was compared against that based on manual segmentation. The mean Dice similarity coefficient of the trained segmentation model was 81.8% and 74.8% for external validation with Dataset 1 and Dataset 2 respectively. Four classifiers frequently used in radiomics studies were trained and tested with leave-one-out cross-validation strategy. For pathological grading prediction with Dataset 1, the area under the receiver operating characteristic curve (AUC) with semi-automatic segmentation was up to 0.76 and 0.87 respectively for internal and external validation. For recurrence study with Dataset 2, the AUC with semi-automatic segmentation was up to 0.78. All these AUCs were not statistically significant from the corresponding results based on manual segmentation. Our study showed that DL-based semi-automatic segmentation is accurate and feasible for the radiomics analysis in pNENs.
目前胰腺神经内分泌肿瘤(pNENs)的临床实践或放射组学研究需要手动勾画 CT 图像中的病变,这既耗时又主观。我们使用了一种半自动深度学习(DL)方法对 pNENs 进行分割,并验证了其在放射组学分析中的可行性。这项回顾性研究包括两个数据集:数据集 1 由两个中心分别收集的 80 例和 18 例患者的增强 CT 图像(CECT)组成;数据集 2 由两个中心分别收集的 56 例和 16 例患者的 CECT 组成。基于数据集 1 和数据集 2 开发并验证了基于 DL 的半自动分割模型,并将分割结果用于放射组学分析,比较了其与手动分割的性能。经过训练的分割模型的平均 Dice 相似系数分别为 81.8%和 74.8%,在数据集 1 和数据集 2 上进行外部验证。使用留一交叉验证策略对四种常用于放射组学研究的分类器进行了训练和测试。对于数据集 1 进行病理分级预测,基于半自动分割的受试者工作特征曲线(ROC)下面积(AUC)分别为 0.76 和 0.87。对于数据集 2 进行复发研究,基于半自动分割的 AUC 最高可达 0.78。所有这些 AUC 与基于手动分割的相应结果均无统计学意义。我们的研究表明,基于 DL 的半自动分割对于 pNENs 的放射组学分析是准确且可行的。