Sun Ruikun, Melton Matthew, Safaie Niloofar, Ferrier Robert C, Cheng Shiwang, Liu Yun, Zuo Xiaobing, Wang Yangyang
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA.
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
Phys Rev Lett. 2021 Mar 19;126(11):117801. doi: 10.1103/PhysRevLett.126.117801.
The microscopic origin of mechanical enhancement in polymer nanocomposite (PNC) melts is investigated through the combination of rheology and small-angle neutron scattering. It is shown that in the absence of an extensive particle network, the molecular deformation of polymer chains dominates the stress response on intermediate time scales. Quantitative analyses of small-angle neutron scattering spectra, however, reveal no enhanced structural anisotropy in the PNCs, compared with the pristine polymers under the same deformation conditions. These results demonstrate that the mechanical reinforcement of PNCs is not due to molecular overstraining, but instead a redistribution of strain field in the polymer matrix, akin to the classical picture of hydrodynamic effect of nanoparticles.
通过流变学和小角中子散射相结合的方法,研究了聚合物纳米复合材料(PNC)熔体中机械增强的微观起源。结果表明,在不存在广泛粒子网络的情况下,聚合物链的分子变形在中间时间尺度上主导应力响应。然而,与相同变形条件下的原始聚合物相比,小角中子散射光谱的定量分析表明,PNC中不存在增强的结构各向异性。这些结果表明,PNC的机械增强不是由于分子过度拉伸,而是聚合物基体中应变场的重新分布,类似于纳米颗粒流体动力学效应的经典描述。