Shen Jianxiang, Lin Xiangsong, Liu Jun, Li Xue
Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing 314001, P. R. China.
Phys Chem Chem Phys. 2020 Aug 7;22(29):16760-16771. doi: 10.1039/d0cp02225j. Epub 2020 Jul 14.
Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size. Compared with spherical nanoparticles, anisotropic rod-like ones, especially with larger aspect ratio and rod stiffness, contribute exceptional reinforcement towards polymer materials. In addition, the elastic modulus with the strain, derived from the stress-strain curve, shows an analogous nonlinear behavior to the amplitude-dependence of the storage modulus (Payne effect). Such a behavior originates essentially from the failure/breakup of the microstructures contributing to the mechanical reinforcement, such as bound polymer layers around nanoparticles or nanoparticle networking structures. The Young's modulus as a function of the nanoparticle volume fraction greatly exceeds that predicted by the Einstein-Smallwood model and Guth-Gold model, which arises primarily from the contribution of the local/global filler network. The temperature dependence of the Young's modulus is further examined by mode coupling theory (MCT) and the Vogel-Fulcher-Tammann (VFT) equation, and the results indicate that the time-temperature superposition principle holds modestly above the critical temperature on the short-time (small-length) scale of elastic response. This work is expected to provide some guidance on controlling and improving the mechanical properties and nonlinear behavior of PNCs.
通过粗粒度分子动力学模拟,全面研究了纳米颗粒特性、聚合物 - 纳米颗粒相互作用、链交联和温度对聚合物纳米复合材料(PNCs)应力 - 应变行为及机械增强的影响。通过在宽范围内调节填料 - 聚合物相互作用(相容性),发现在中等相互作用强度下纳米颗粒具有最佳分散状态,而由于纳米颗粒通过聚合物链形成的远程桥接结构,PNCs的机械性能随颗粒 - 聚合物相互作用的增加而单调提高。尽管较小尺寸的填料更容易形成相互连接的结构,但在形成三维填料网络的渗流阈值浓度下,PNCs的弹性模量几乎与纳米颗粒尺寸无关。与球形纳米颗粒相比,各向异性的棒状纳米颗粒,特别是具有较大长径比和棒刚度的,对聚合物材料具有特殊的增强作用。此外,由应力 - 应变曲线得出的弹性模量随应变的变化,表现出与储能模量的振幅依赖性(佩恩效应)类似的非线性行为。这种行为本质上源于对机械增强有贡献的微观结构的破坏/解体,例如纳米颗粒周围的束缚聚合物层或纳米颗粒网络结构。作为纳米颗粒体积分数函数的杨氏模量大大超过爱因斯坦 - 斯莫尔伍德模型和古思 - 戈德模型预测的值,这主要源于局部/全局填料网络的贡献。通过模式耦合理论(MCT)和沃格尔 - 富尔彻 - 塔曼(VFT)方程进一步研究了杨氏模量的温度依赖性,结果表明在弹性响应的短时间(小长度)尺度上,时间 - 温度叠加原理在略高于临界温度时成立。这项工作有望为控制和改善PNCs的机械性能及非线性行为提供一些指导。