Suppr超能文献

评估缺氧行星大气中的异戊二烯是否可能成为生物特征气体。

Assessment of Isoprene as a Possible Biosignature Gas in Exoplanets with Anoxic Atmospheres.

机构信息

Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA.

Department of Physics, MIT, Cambridge, Massachusetts, USA.

出版信息

Astrobiology. 2021 Jul;21(7):765-792. doi: 10.1089/ast.2019.2146. Epub 2021 Apr 1.

Abstract

The search for possible biosignature gases in habitable exoplanet atmospheres is accelerating, although actual observations are likely years away. This work adds isoprene, CH, to the roster of biosignature gases. We found that isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (CH; ∼500 Tg/year). Unlike methane, on Earth isoprene is rapidly destroyed by oxygen-containing radicals. Although isoprene is predominantly produced by deciduous trees, isoprene production is ubiquitous to a diverse array of evolutionary distant organisms, from bacteria to plants and animals-few, if any, volatile secondary metabolites have a larger evolutionary reach. Although non-photochemical sinks of isoprene may exist, such as degradation of isoprene by life or other high deposition rates, destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star ultraviolet fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization when using James Webb Space Telescope (JWST) is only achievable with a transit signal similar or larger than that for a super-Earth-sized exoplanet transiting an M dwarf star with an H-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ∼100 times the Earth's production rate. In this run-away scenario, isoprene will accumulate to >100 ppm, and its spectral features are detectable with ∼20 JWST transits. One caveat is that some isoprene spectral features are hard to distinguish from those of methane and also from other hydrocarbons containing the isoprene substructure. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.

摘要

在宜居系外行星大气中寻找可能的生物特征气体的工作正在加速,尽管实际观测可能还需要数年时间。这项工作将异戊二烯(CH)添加到生物特征气体列表中。我们发现,异戊二烯的地球化学形成在热力学上极不受欢迎,并且没有已知的非生物假阳性。地球上异戊二烯的产生速率与甲烷(CH)相当(约 500Tg/年)。与甲烷不同,地球上的异戊二烯会被含氧自由基迅速破坏。尽管异戊二烯主要由落叶树产生,但异戊二烯的产生在从细菌到植物和动物等各种进化距离的生物体中普遍存在——很少有(如果有的话)挥发性次生代谢产物具有更大的进化范围。尽管异戊二烯可能存在非光化学汇,例如生命降解异戊二烯或其他高沉积速率,但缺氧大气中异戊二烯的破坏主要由光化学驱动。受异戊二烯可能在缺氧环境中积累的概念的启发,我们在不同的宿主星紫外线通量下,对各种大气成分的宜居温度、岩石系外行星缺氧大气中的异戊二烯光化学和光谱检测进行建模。受假设的 10ppm 仪器噪声底限的限制,使用詹姆斯·韦伯太空望远镜(JWST)进行宜居大气特征描述只能在与类似或大于具有主导 H 气氛的 M 矮星过境的超级地球大小系外行星的过境信号相似或更大的情况下实现。不幸的是,异戊二烯如果不进入失控阶段,就无法积累到可检测的丰度,而失控阶段发生在非常高的产生速率下,约为地球产生速率的 100 倍。在这种失控情况下,异戊二烯将积累到>100ppm,并且可以通过大约 20 次 JWST 过境来检测其光谱特征。一个警告是,一些异戊二烯光谱特征很难与甲烷的光谱特征以及其他含有异戊二烯结构的烃类的光谱特征区分开来。尽管存在这些挑战,但异戊二烯值得被添加到潜在的生物特征气体菜单中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验