Ramalingam Baskaran, Venkatachalam Srinivasan Shanmugham, Kiran Manikantan Syamala, Das Sujoy K
Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai 600020, India; Department of Civil Engineering, A. C. Tech., Anna University, Chennai, 600020, India.
Environmental Engineering Division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Environ Pollut. 2021 Jun 1;278:116847. doi: 10.1016/j.envpol.2021.116847. Epub 2021 Mar 2.
Sustainable treatment of wastewater containing trivalent chromium (Cr) remains a significant challenge owing to the several limitations of the existing methodologies. Herein, combination of biosynthesis and Response Surface Methodology (RSM) for the fabrication and optimization of Shewanella oneidensis biofilm functionalized graphene-magnetite (GrM) nanobiocomposite was adopted as a 'living functional nanomaterial' (viz. S-GrM) for effective removal of Cr ions from aqueous solution. In the biosynthetic process, S. oneidensis cells reduced the GO-akaganeite complex and adhered on the as-synthesized GrM nanocomposite to form S-GrM hybrid-nanobiocomposite. The process parameters for fabrication of S-GrM hybrid-nanobiocomposite was optimized by RSM based on four responses of easy magnetic separation, biofilm formation along with protein, and carbohydrate contents in extracellular polymeric substances (EPS). The morphology and chemical composition of S-GrM hybrid-nanobiocomposite were investigated using various spectroscopic and microscopic analyses and subsequently explored for removal of Cr ions. The hybrid-nanobiocomposite effectively removed 304.64 ± 14.02 mg/g of Cr at pH 7.0 and 30 °C, which is found to be very high compared to the previously reported values. The high surface area of graphene, biofilm biomass of S. oneidensis and plenty of functional groups provided a unique structure to the S-GrM hybrid-nanobiocomposite for efficient removal of Cr through synergistic interaction. The FTIR and zeta potential studies confirmed that electrostatic and chelation/complexation reaction played key roles in the adsorption process. The fabrication of S-GrM nanobiocomposite thus creates a novel hybrid 'living functional nanomaterial' for low cost, recyclable, and sustainable removal of Cr from wastewater.
由于现有方法存在诸多局限性,含三价铬(Cr)废水的可持续处理仍然是一项重大挑战。在此,采用生物合成与响应面法(RSM)相结合的方法制备和优化了希瓦氏菌生物膜功能化的石墨烯-磁铁矿(GrM)纳米生物复合材料,作为一种“活性功能纳米材料”(即S-GrM),用于从水溶液中有效去除Cr离子。在生物合成过程中,希瓦氏菌细胞还原了氧化石墨烯-羟铁矿复合物,并附着在合成的GrM纳米复合材料上,形成S-GrM杂化纳米生物复合材料。基于易于磁分离、生物膜形成以及细胞外聚合物(EPS)中蛋白质和碳水化合物含量这四个响应,通过RSM对S-GrM杂化纳米生物复合材料的制备工艺参数进行了优化。利用各种光谱和显微镜分析研究了S-GrM杂化纳米生物复合材料的形态和化学成分,并随后探索了其对Cr离子的去除效果。该杂化纳米生物复合材料在pH 7.0和30℃时能有效去除304.64±14.02 mg/g的Cr,与先前报道的值相比非常高。石墨烯的高比表面积、希瓦氏菌的生物膜生物量以及大量的官能团为S-GrM杂化纳米生物复合材料提供了独特的结构,通过协同相互作用实现了对Cr的高效去除。傅里叶变换红外光谱(FTIR)和zeta电位研究证实,静电作用以及螯合/络合反应在吸附过程中起关键作用。因此,S-GrM纳米生物复合材料的制备创造了一种新型的杂化“活性功能纳米材料”,用于低成本、可回收且可持续地从废水中去除Cr。