Suppr超能文献

帕金森病:铁和氧化还原生物学的改变作为解锁治疗策略的关键。

Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies.

机构信息

School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.

School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.

出版信息

Redox Biol. 2021 May;41:101896. doi: 10.1016/j.redox.2021.101896. Epub 2021 Feb 14.

Abstract

A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.

摘要

大量研究表明,帕金森病(PD)患者的铁代谢失调。文献中记载了与既定理论一致的明确改变,但也有一些有趣的矛盾观察结果,需要进行机制剖析。一个重要事实是,在帕金森病中受影响最严重的细胞——黑质致密部(SNpc)的多巴胺能神经元中铁的负荷增加。对这些变化的评估显示,铁摄取关键蛋白的表达增加,即转铁蛋白受体 1 和二价金属转运蛋白 1(DMT1),而铁输出蛋白——亚铁转运蛋白-1(FPN1)的表达减少。与之一致的是,铁调节蛋白(IRP)RNA 结合活性的激活,这是铁稳态的重要调节剂,其激活表明细胞溶质铁缺乏。事实上,IRP 结合到特定 mRNA 的 3'非翻译区(UTR)中的铁反应元件(IRE)上,以稳定其半衰期,而结合到 5'UTR 上则阻止翻译。PD 中多巴胺能神经元的铁负荷可能通过这些机制发生,导致神经元铁增加和铁介导的活性氧(ROS)生成。帕金森病的“金标准”组织学标志物——路易体主要由α-突触核蛋白组成,其在 PD 中的表达显著增加。值得注意的是,α-突触核蛋白的 5'UTR 中存在一个非典型的 IRE,这可能解释了其在铁增加时的上调。这种失调可能受到 SNpc 多巴胺能神经元独特的自主起搏的影响,这种起搏涉及 L 型钙通道,从而导致生物能能量不足和线粒体氧化还原应激。这种功能障碍可能会导致铁运输的改变,试图挽救能量不足,例如增加铁摄取以提供铁给关键电子传递蛋白。考虑到 PD 大脑中的铁负荷增加,利用有限铁螯合的疗法已经取得了成功。一旦对铁处理的确切分子途径进行剖析,应该可以取得更大的治疗进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad6f/8044696/9c1814c02142/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验