Suppr超能文献

用于NO传感器的CuO修饰还原氧化石墨烯的合成

Synthesis of CuO-Modified Reduced Graphene Oxide for NO Sensors.

作者信息

Huang Manman, Wang Yanyan, Ying Shuyang, Wu Zhekun, Liu Weixiao, Chen Da, Peng Changsi

机构信息

School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.

出版信息

Sensors (Basel). 2021 Mar 11;21(6):1958. doi: 10.3390/s21061958.

Abstract

Nowadays, metal oxide semiconductors (MOS)-reduced graphene oxide (rGO) nanocomposites have attracted significant research attention for gas sensing applications. Herein, a novel composite material is synthesized by combining two p-type semiconductors, i.e., CuO and rGO, and a p-p-type gas sensor is assembled for NO detection. Briefly, polypyrrole-coated cuprous oxide nanowires (PPy/CuO) are prepared via hydrothermal method and combined with graphene oxide (GO). Then, the nanocomposite (rGO/PPy/CuO) is obtained by using high-temperature thermal reduction under Ar atmosphere. The results reveal that the as-prepared rGO/PPy/CuO nanocomposite exhibits a maximum NO response of 42.5% and is capable of detecting NO at a low concentration of 200 ppb. Overall, the as-prepared rGO/PPy/CuO nanocomposite demonstrates excellent sensitivity, reversibility, repeatability, and selectivity for NO sensing applications.

摘要

如今,金属氧化物半导体(MOS)-还原氧化石墨烯(rGO)纳米复合材料在气体传感应用方面已引起了广泛的研究关注。在此,通过结合两种p型半导体,即氧化铜(CuO)和rGO,合成了一种新型复合材料,并组装了一种用于检测NO的p-p型气体传感器。简要地说,通过水热法制备聚吡咯包覆的氧化亚铜纳米线(PPy/CuO),并将其与氧化石墨烯(GO)相结合。然后,在氩气气氛下通过高温热还原获得纳米复合材料(rGO/PPy/CuO)。结果表明,所制备的rGO/PPy/CuO纳米复合材料对NO的最大响应为42.5%,并且能够检测低至200 ppb浓度的NO。总体而言,所制备的rGO/PPy/CuO纳米复合材料在NO传感应用中表现出优异的灵敏度、可逆性、重复性和选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8311/7998349/34998fc6899d/sensors-21-01958-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验