Zeng Junjie, Sun Xiaoya, Zhang Qi, Li Xinmeng
College of Systems Engineering, National University of Defense Technology, Changsha 410073, China.
Entropy (Basel). 2021 Mar 8;23(3):322. doi: 10.3390/e23030322.
Machine Reading Comprehension (MRC) research concerns how to endow machines with the ability to understand given passages and answer questions, which is a challenging problem in the field of natural language processing. To solve the Chinese MRC task efficiently, this paper proposes an Improved Extraction-based Reading Comprehension method with Answer Re-ranking (IERC-AR), consisting of a candidate answer extraction module and a re-ranking module. The candidate answer extraction module uses an improved pre-training language model, RoBERTa-WWM, to generate precise word representations, which can solve the problem of polysemy and is good for capturing Chinese word-level features. The re-ranking module re-evaluates candidate answers based on a self-attention mechanism, which can improve the accuracy of predicting answers. Traditional machine-reading methods generally integrate different modules into a pipeline system, which leads to re-encoding problems and inconsistent data distribution between the training and testing phases; therefore, this paper proposes an end-to-end model architecture for IERC-AR to reasonably integrate the candidate answer extraction and re-ranking modules. The experimental results on the Les MMRC dataset show that IERC-AR outperforms state-of-the-art MRC approaches.
机器阅读理解(MRC)研究关注如何赋予机器理解给定段落并回答问题的能力,这是自然语言处理领域中一个具有挑战性的问题。为了高效地解决中文MRC任务,本文提出了一种带有答案重排的改进型基于提取的阅读理解方法(IERC-AR),它由候选答案提取模块和重排模块组成。候选答案提取模块使用改进的预训练语言模型RoBERTa-WWM来生成精确的词表示,这可以解决一词多义的问题,并且有利于捕捉中文词级特征。重排模块基于自注意力机制对候选答案进行重新评估,这可以提高答案预测的准确性。传统的机器阅读方法通常将不同的模块集成到一个管道系统中,这会导致重新编码问题以及训练和测试阶段之间的数据分布不一致;因此,本文为IERC-AR提出了一种端到端的模型架构,以合理地集成候选答案提取和重排模块。在Les MMRC数据集上的实验结果表明,IERC-AR优于当前最先进的MRC方法。