Giráldez-Pérez Rosa M, Grueso Elia, Domínguez Inmaculada, Pastor Nuria, Kuliszewska Edyta, Prado-Gotor Rafael, Requena-Domenech Francisco
Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain.
Department of Physical Chemistry, University of Seville, 41012 Seville, Spain.
Pharmaceutics. 2021 Mar 21;13(3):423. doi: 10.3390/pharmaceutics13030423.
The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA-5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV-visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques. Method tuning also requires the use of circular dichroism, atomic force microscopy, and fluorescence spectroscopy techniques for the prior selection of the optimal relative Au@16-Ph-16 and DNA concentrations (R = C/C), biopolymer compaction/decompaction, and 5-Fu release from the DNA/5-Fu complex. TEM experiments revealed the effective internalization of the both precursor and Au@16-Ph-16/DNA-5-Fu-compacted nanosystems into the cells. Moreover, cytotoxicity assays and internalization experiments using TEM and confocal microscopy showed that the new strategy for 5-Fu administration enhanced efficacy, biocompatibility and selectivity against lung cancer cells. The differential uptake among different formulations is discussed in terms of the physicochemical properties of the nanosystems.
设计和制备用于化疗的新型纳米载体来运输抗癌药物是医学领域一项重要的研究方向。基于两种新型生物相容性金纳米系统设计了一种新型5-氟尿嘧啶(5-Fu)转运体:(i)一种金纳米颗粒前体Au@16-Ph-16,由带正电荷的双子表面活性剂16-Ph-16稳定;(ii)由前体与DNA/5-Fu复合物形成的致密纳米复合物Au@16-Ph-16/DNA-5-Fu。通过紫外可见光谱、透射电子显微镜、动态光散射和zeta电位技术研究了所得纳米系统的物理化学性质。方法调整还需要使用圆二色性、原子力显微镜和荧光光谱技术来预先选择最佳的相对Au@16-Ph-16与DNA浓度(R = C/C)、生物聚合物的压实/解压实以及5-Fu从DNA/5-Fu复合物中的释放情况。透射电子显微镜实验揭示了前体和Au@16-Ph-16/DNA-5-Fu致密纳米系统均能有效内化进入细胞。此外,细胞毒性测定以及使用透射电子显微镜和共聚焦显微镜进行的内化实验表明,5-Fu给药的新策略提高了对肺癌细胞的疗效、生物相容性和选择性。根据纳米系统的物理化学性质讨论了不同制剂之间的差异摄取情况。