Suppr超能文献

从. 中生产天然毒素 A 和毒素 B 的重要参数的系统评估

Systematic Evaluation of Parameters Important for Production of Native Toxin A and Toxin B from .

机构信息

Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark.

Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Toxins (Basel). 2021 Mar 27;13(4):240. doi: 10.3390/toxins13040240.

Abstract

In the attempt to improve the purification yield of native toxin A (TcdA) and toxin B (TcdB) from , we systematically evaluated culture parameters for their influence on toxin production. In this study, we showed that culturing in a tryptone-yeast extract medium buffered in PBS (pH 7.5) that contained 5 mM ZnCl and 10 mM glucose supported the highest TcdB production, measured by the sandwich ELISA. These culture conditions were scalable into 5 L and 15 L dialysis tube cultures, and we were able to reach a TcdB concentration of 29.5 µg/mL of culture. Furthermore, we established a purification protocol for TcdA and TcdB using FPLC column chromatography, reaching purities of >99% for both toxins with a yield around 25% relative to the starting material. Finally, by screening the melting temperatures of TcdA and TcdB in various buffer conditions using differential scanning fluorimetry, we found optimal conditions for improving the protein stability during storage. The results of this study present a complete protocol for obtaining high amounts of highly purified native TcdA and TcdB from

摘要

为了提高天然毒素 A (TcdA) 和毒素 B (TcdB) 的纯化产量,我们系统地评估了培养参数对毒素产生的影响。在这项研究中,我们表明,在 PBS(pH7.5) 缓冲的胰蛋白胨-酵母提取物培养基中培养,其中含有 5mM ZnCl 和 10mM 葡萄糖,支持最高的 TcdB 产量,通过夹心 ELISA 测量。这些培养条件可扩展到 5L 和 15L 透析管培养中,我们能够达到 29.5µg/mL 的培养物 TcdB 浓度。此外,我们使用 FPLC 柱层析建立了 TcdA 和 TcdB 的纯化方案,两种毒素的纯度均>99%,相对于起始材料的产量约为 25%。最后,通过使用差示扫描荧光法在各种缓冲条件下筛选 TcdA 和 TcdB 的熔点,我们找到了在储存过程中提高蛋白质稳定性的最佳条件。这项研究的结果提供了从获得大量高纯度天然 TcdA 和 TcdB 的完整方案。

相似文献

1
Systematic Evaluation of Parameters Important for Production of Native Toxin A and Toxin B from .
Toxins (Basel). 2021 Mar 27;13(4):240. doi: 10.3390/toxins13040240.
3
Detoxification of toxin A and toxin B by copper ion-catalyzed oxidation in production of a toxoid-based vaccine against Clostridioides difficile.
Free Radic Biol Med. 2020 Nov 20;160:433-446. doi: 10.1016/j.freeradbiomed.2020.08.021. Epub 2020 Aug 27.
4
Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
J Bacteriol. 2010 Oct;192(19):4904-11. doi: 10.1128/JB.00445-10. Epub 2010 Jul 30.
5
Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease.
Infect Immun. 2000 Oct;68(10):5480-7. doi: 10.1128/IAI.68.10.5480-5487.2000.
6
The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
J Bacteriol. 2013 Nov;195(22):5174-85. doi: 10.1128/JB.00501-13. Epub 2013 Sep 13.
8
Human intestinal enteroids as a model of -induced enteritis.
Am J Physiol Gastrointest Liver Physiol. 2020 May 1;318(5):G870-G888. doi: 10.1152/ajpgi.00045.2020. Epub 2020 Mar 30.
9
A Streamlined Method to Obtain Biologically Active TcdA and TcdB Toxins from .
Toxins (Basel). 2024 Jan 11;16(1):38. doi: 10.3390/toxins16010038.
10
Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B.
PLoS Pathog. 2020 Dec 28;16(12):e1009181. doi: 10.1371/journal.ppat.1009181. eCollection 2020 Dec.

引用本文的文献

1
A sequence invariable region in TcdB2 is required for toxin escape from .
J Bacteriol. 2024 Jul 25;206(7):e0009624. doi: 10.1128/jb.00096-24. Epub 2024 Jun 18.
3
High-resolution structure of native toxin A from Clostridioides difficile.
EMBO Rep. 2022 Jan 5;23(1):e53597. doi: 10.15252/embr.202153597. Epub 2021 Nov 24.

本文引用的文献

1
Detoxification of toxin A and toxin B by copper ion-catalyzed oxidation in production of a toxoid-based vaccine against Clostridioides difficile.
Free Radic Biol Med. 2020 Nov 20;160:433-446. doi: 10.1016/j.freeradbiomed.2020.08.021. Epub 2020 Aug 27.
2
The Impact of pH on Clostridioides difficile Sporulation and Physiology.
Appl Environ Microbiol. 2020 Feb 3;86(4). doi: 10.1128/AEM.02706-19.
3
RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
mBio. 2019 Mar 12;10(2):e01991-18. doi: 10.1128/mBio.01991-18.
4
Global burden of infections: a systematic review and meta-analysis.
J Glob Health. 2019 Jun;9(1):010407. doi: 10.7189/jogh.09.010407.
5
The role of zinc and nutritional immunity in Clostridium difficile infection.
Gut Microbes. 2018;9(5):469-476. doi: 10.1080/19490976.2018.1448354. Epub 2018 Sep 25.
6
Advances in the diagnosis and treatment of Clostridium difficile infections.
Emerg Microbes Infect. 2018 Feb 7;7(1):15. doi: 10.1038/s41426-017-0019-4.
7
Dietary trehalose enhances virulence of epidemic Clostridium difficile.
Nature. 2018 Jan 18;553(7688):291-294. doi: 10.1038/nature25178. Epub 2018 Jan 3.
8
The role of toxins in Clostridium difficile infection.
FEMS Microbiol Rev. 2017 Nov 1;41(6):723-750. doi: 10.1093/femsre/fux048.
9
Effect of Mutation on Sporulation in the Epidemic Strain R20291.
mSphere. 2017 Feb 15;2(1). doi: 10.1128/mSphere.00383-16. eCollection 2017 Jan-Feb.
10
Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection.
N Engl J Med. 2017 Jan 26;376(4):305-317. doi: 10.1056/NEJMoa1602615.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验