Brennan Grace, Ryan Sally, Soulimane Tewfik, Tofail Syed A M, Silien Christophe
Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
Nanomaterials (Basel). 2021 Mar 9;11(3):685. doi: 10.3390/nano11030685.
Magnetic-plasmonic, FeO-Au, core-shell nanoparticles are popular in many applications, most notably in therapeutics and diagnostics, and thus, the imaging of these nanostructures in biological samples is of high importance. These nanostructures are typically imaged in biological material by dark field scatter imaging, which requires an even distribution of nanostructures in the sample and, therefore, high nanoparticle doses, potentially leading to toxicology issues. Herein, we explore the nonlinear optical properties of magnetic nanoparticles coated with various thicknesses of gold using the open aperture z-scan technique to determine the nonlinear optical properties and moreover, predict the efficacy of the nanostructures in nonlinear imaging. We find that the magnetic nanoparticles coated with gold nanoseeds and thinner gold shells (ca. 4 nm) show the largest nonlinear absorption coefficient β and imaginary part of the third-order susceptibility Im χ, suggesting that these nanostructures would be suitable contrast agents. Next, we combine laser dark field microscopy and epi-detected coherent anti-Stokes Raman (CARS) microscopy to image the uptake of magnetic-plasmonic nanoparticles in human pancreatic cancer cells. We show the epi-detected CARS technique is suitable for imaging of the magnetic-plasmonic nanoparticles without requiring a dense distribution of nanoparticles. This technique achieves superior nanoparticle contrasting over both epi-detected backscatter imaging and transmission dark field imaging, while also attaining label-free chemical contrasting of the cell. Lastly, we show the high biocompatibility of the FeO nanoparticles with ca. 4-nm thick Au shell at concentrations of 10-100 µg/mL.
磁性等离子体FeO-Au核壳纳米粒子在许多应用中都很受欢迎,最显著的是在治疗和诊断领域,因此,对生物样品中这些纳米结构的成像至关重要。这些纳米结构通常通过暗场散射成像在生物材料中成像,这需要纳米结构在样品中均匀分布,因此需要高剂量的纳米粒子,这可能会导致毒理学问题。在此,我们使用开孔z扫描技术探索了涂覆有不同厚度金的磁性纳米粒子的非线性光学特性,以确定其非线性光学特性,并进一步预测纳米结构在非线性成像中的效果。我们发现,涂覆有金纳米种子和较薄金壳(约4纳米)的磁性纳米粒子显示出最大的非线性吸收系数β和三阶极化率的虚部Imχ,这表明这些纳米结构将是合适的造影剂。接下来,我们结合激光暗场显微镜和落射检测相干反斯托克斯拉曼(CARS)显微镜对磁性等离子体纳米粒子在人胰腺癌细胞中的摄取进行成像。我们表明,落射检测CARS技术适用于磁性等离子体纳米粒子的成像,而无需纳米粒子的密集分布。该技术在落射检测背散射成像和透射暗场成像方面都实现了卓越的纳米粒子对比度,同时还实现了细胞的无标记化学对比度。最后,我们展示了在浓度为10-100μg/mL时,具有约4纳米厚金壳的FeO纳米粒子具有高生物相容性。