Suppr超能文献

用于脑的多模态影像引导治疗的磁等离子体纳米颗粒的开发。

Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain.

机构信息

Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA.

Molecular Imaging Program at Stanford (MIPS), The James H Clark Center, Stanford University, Stanford, California 94305, USA and Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA.

出版信息

Nanoscale. 2017 Jan 5;9(2):764-773. doi: 10.1039/c6nr07520g.

Abstract

Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.

摘要

磁等离子体纳米粒子是纳米医学领域中新兴的多功能材料之一。它们在靶向和多模态成像方面的潜力极具吸引力。在这项研究中,通过在磁性纳米粒子种子上还原 Au 离子,合成了磁性核/金壳(MNP@Au)磁等离子体纳米粒子。评估了通过改变 Au 离子和还原剂浓度合成的磁等离子体纳米粒子的水动力尺寸和光学性质。合成的磁等离子体纳米粒子表现出超顺磁性,其磁性有助于磁共振成像(MRI)中浓度依赖性的对比。磁等离子体纳米粒子的金壳部分的成像对比也通过 X 射线计算机断层扫描(CT)得到了证实。通过体外血脑屏障(BBB)模型进行的磁等离子体纳米粒子的迁移研究证明,在不破坏 BBB 完整性的情况下,迁移效率得到了提高,并显示出在治疗脑部疾病和神经紊乱方面的应用潜力。

相似文献

引用本文的文献

1
Imaging-guided precision hyperthermia with magnetic nanoparticles.基于磁性纳米颗粒的成像引导精准热疗
Nat Rev Bioeng. 2025 Mar;3(3):245-260. doi: 10.1038/s44222-024-00257-3. Epub 2024 Nov 7.
8
Magnetic Nanoparticle Composites: Synergistic Effects and Applications.磁性纳米粒子复合材料:协同效应与应用。
Adv Sci (Weinh). 2021 May 5;8(12):2004951. doi: 10.1002/advs.202004951. eCollection 2021 Jun.

本文引用的文献

1
Current status of non-viral gene therapy for CNS disorders.中枢神经系统疾病非病毒基因治疗的现状
Expert Opin Drug Deliv. 2016 Oct;13(10):1433-45. doi: 10.1080/17425247.2016.1188802. Epub 2016 Jun 1.
8
10
The potential of magneto-electric nanocarriers for drug delivery.磁电纳米载体用于药物递送的潜力。
Expert Opin Drug Deliv. 2014 Oct;11(10):1635-46. doi: 10.1517/17425247.2014.933803. Epub 2014 Jul 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验