Suppr超能文献

通过机器学习发现新型抗糖尿病肽并进行临床前验证

Discovery through Machine Learning and Preclinical Validation of Novel Anti-Diabetic Peptides.

作者信息

Casey Rory, Adelfio Alessandro, Connolly Martin, Wall Audrey, Holyer Ian, Khaldi Nora

机构信息

Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland.

出版信息

Biomedicines. 2021 Mar 9;9(3):276. doi: 10.3390/biomedicines9030276.

Abstract

While there have been significant advances in drug discovery for diabetes mellitus over the past couple of decades, there is an opportunity and need for improved therapies. While type 2 diabetic patients better manage their illness, many of the therapeutics in this area are peptide hormones with lengthy sequences and a molecular structure that makes them challenging and expensive to produce. Using machine learning, we present novel anti-diabetic peptides which are less than 16 amino acids in length, distinct from human signalling peptides. We validate the capacity of these peptides to stimulate glucose uptake and Glucose transporter type 4 (GLUT4) translocation in vitro. In obese insulin-resistant mice, predicted peptides significantly lower plasma glucose, reduce glycated haemoglobin and even improve hepatic steatosis when compared to treatments currently in use in a clinical setting. These unoptimised, linear peptides represent promising candidates for blood glucose regulation which require further evaluation. Further, this indicates that perhaps we have overlooked the class of natural short linear peptides, which usually come with an excellent safety profile, as therapeutic modalities.

摘要

在过去几十年里,糖尿病药物研发取得了重大进展,但仍有机会且需要改进治疗方法。虽然2型糖尿病患者能更好地控制病情,但该领域的许多治疗药物都是肽激素,其序列冗长,分子结构使其生产具有挑战性且成本高昂。我们利用机器学习,展示了长度小于16个氨基酸的新型抗糖尿病肽,它们不同于人类信号肽。我们在体外验证了这些肽刺激葡萄糖摄取和4型葡萄糖转运蛋白(GLUT4)易位的能力。在肥胖胰岛素抵抗小鼠中,与临床中目前使用的治疗方法相比,预测的肽能显著降低血糖、降低糖化血红蛋白,甚至改善肝脂肪变性。这些未优化的线性肽是血糖调节的有前景的候选药物,需要进一步评估。此外,这表明我们可能忽视了通常具有良好安全性的天然短线性肽类作为治疗方式的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ad1/8000967/b0e484b40db5/biomedicines-09-00276-g001.jpg

相似文献

1
Discovery through Machine Learning and Preclinical Validation of Novel Anti-Diabetic Peptides.
Biomedicines. 2021 Mar 9;9(3):276. doi: 10.3390/biomedicines9030276.
2
AntiDMPpred: a web service for identifying anti-diabetic peptides.
PeerJ. 2022 Jun 14;10:e13581. doi: 10.7717/peerj.13581. eCollection 2022.
3
Machine learning assisted design of highly active peptides for drug discovery.
PLoS Comput Biol. 2015 Apr 7;11(4):e1004074. doi: 10.1371/journal.pcbi.1004074. eCollection 2015 Apr.
5
Separation of insulin signaling into distinct GLUT4 translocation and activation steps.
Mol Cell Biol. 2004 Sep;24(17):7567-77. doi: 10.1128/MCB.24.17.7567-7577.2004.
7
Oral antidiabetic agents: current role in type 2 diabetes mellitus.
Drugs. 2005;65(3):385-411. doi: 10.2165/00003495-200565030-00005.
9
Discovery of novel pyridazine derivatives as glucose transporter type 4 (GLUT4) translocation activators.
Bioorg Med Chem Lett. 2019 Jul 15;29(14):1785-1790. doi: 10.1016/j.bmcl.2019.05.013. Epub 2019 May 8.

引用本文的文献

2
Recent Advances in the Discovery of Novel Drugs on Natural Molecules.
Biomedicines. 2024 Jun 5;12(6):1254. doi: 10.3390/biomedicines12061254.
3
Bioactive compounds for human and planetary health.
Front Nutr. 2023 Jul 17;10:1193848. doi: 10.3389/fnut.2023.1193848. eCollection 2023.
5
Predicting High Blood Pressure Using DNA Methylome-Based Machine Learning Models.
Biomedicines. 2022 Jun 14;10(6):1406. doi: 10.3390/biomedicines10061406.

本文引用的文献

3
The relationship between HbA1c reduction and healthcare costs among patients with type 2 diabetes: evidence from a U.S. claims database.
Curr Med Res Opin. 2020 Sep;36(9):1441-1447. doi: 10.1080/03007995.2020.1787971. Epub 2020 Jul 17.
4
The anti-ageing effects of a natural peptide discovered by artificial intelligence.
Int J Cosmet Sci. 2020 Aug;42(4):388-398. doi: 10.1111/ics.12635.
5
Artificial intelligence identified peptides modulate inflammation in healthy adults.
Food Funct. 2019 Sep 1;10(9):6030-6041. doi: 10.1039/c9fo01398a. Epub 2019 Sep 4.
6
A Comprehensive Review on Current Advances in Peptide Drug Development and Design.
Int J Mol Sci. 2019 May 14;20(10):2383. doi: 10.3390/ijms20102383.
7
Metformin-Induced Mitochondrial Complex I Inhibition: Facts, Uncertainties, and Consequences.
Front Endocrinol (Lausanne). 2018 Dec 17;9:753. doi: 10.3389/fendo.2018.00753. eCollection 2018.
8
Fatty liver index is a predictor of incident diabetes in patients with prediabetes: The PREDAPS study.
PLoS One. 2018 Jun 1;13(6):e0198327. doi: 10.1371/journal.pone.0198327. eCollection 2018.
9
IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.
Diabetes Res Clin Pract. 2018 Apr;138:271-281. doi: 10.1016/j.diabres.2018.02.023. Epub 2018 Feb 26.
10
Anti-diabetic effects and mechanisms of action of a Chinese herbal medicine preparation JQ-R and in diabetic KK mice.
Acta Pharm Sin B. 2017 Jul;7(4):461-469. doi: 10.1016/j.apsb.2017.04.010. Epub 2017 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验