School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China.
Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing 210044, China.
Sensors (Basel). 2021 Mar 25;21(7):2287. doi: 10.3390/s21072287.
Device-free passive intrusion detection is a promising technology to determine whether moving subjects are present without deploying any specific sensors or devices in the area of interest. With the rapid development of wireless technology, multi-input multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM) which were originally exploited to improve the stability and bandwidth of Wi-Fi communication, can now support extensive applications such as indoor intrusion detection, patient monitoring, and healthcare monitoring for the elderly. At present, most research works use channel state information (CSI) in the IEEE 802.11n standard to analyze signals and select features. However, there are very limited studies on intrusion detection in real home environments that consider scenarios that include different motion speeds, different numbers of intruders, varying locations of devices, and whether people are present sleeping at home. In this paper, we propose an adaptive real-time indoor intrusion detection system using subcarrier correlation-based features based on the characteristics of narrow frequency spacing of adjacent subcarriers. We propose a link-pair selection algorithm for choosing an optimal link pair as a baseline for subsequent CSI processing. We prototype our system on commercial Wi-Fi devices and compare the overall performance with those of state-of-the-art approaches. The experimental results demonstrate that our system achieves impressive performance regardless of intruder's motion speeds, number of intruders, non-line-of-sight conditions, and sleeping occupant conditions.
无设备被动入侵检测是一种很有前途的技术,可用于确定移动目标是否存在,而无需在感兴趣区域部署任何特定的传感器或设备。随着无线技术的快速发展,多输入多输出(MIMO)和正交频分复用(OFDM)最初用于提高 Wi-Fi 通信的稳定性和带宽,现在可以支持广泛的应用,如室内入侵检测、患者监测和老年人的医疗保健监测。目前,大多数研究工作使用 IEEE 802.11n 标准中的信道状态信息(CSI)来分析信号并选择特征。然而,对于在实际家庭环境中考虑不同运动速度、不同数量的入侵者、设备位置变化以及家中是否有人睡觉等场景的入侵检测,研究非常有限。在本文中,我们提出了一种基于子载波相关特征的自适应实时室内入侵检测系统,该系统利用了相邻子载波窄频率间隔的特点。我们提出了一种链路对选择算法,用于选择最佳链路对作为后续 CSI 处理的基线。我们在商业 Wi-Fi 设备上对我们的系统进行了原型设计,并将整体性能与最先进的方法进行了比较。实验结果表明,无论入侵者的运动速度、入侵者数量、非视距条件和有睡眠者的情况如何,我们的系统都能实现令人印象深刻的性能。