Suppr超能文献

利用微流控系统创建人工三维卵巢卵泡培养系统

Creating an Artificial 3-Dimensional Ovarian Follicle Culture System Using a Microfluidic System.

作者信息

Healy Mae W, Dolitsky Shelley N, Villancio-Wolter Maria, Raghavan Meera, Tillman Alexandra R, Morgan Nicole Y, DeCherney Alan H, Park Solji, Wolff Erin F

机构信息

Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA.

出版信息

Micromachines (Basel). 2021 Mar 4;12(3):261. doi: 10.3390/mi12030261.

Abstract

We hypothesized that the creation of a 3-dimensional ovarian follicle, with embedded granulosa and theca cells, would better mimic the environment necessary to support early oocytes, both structurally and hormonally. Using a microfluidic system with controlled flow rates, 3-dimensional two-layer (core and shell) capsules were created. The core consists of murine granulosa cells in 0.8 mg/mL collagen + 0.05% alginate, while the shell is composed of murine theca cells suspended in 2% alginate. Somatic cell viability tests and hormonal assessments (estradiol, progesterone, and androstenedione) were performed on days 1, 6, 13, 20, and 27. Confocal microscopy confirmed appropriate compartmentalization of fluorescently-labeled murine granulosa cells to the inner capsule and theca cells to the outer shell. Greater than 78% of cells present in capsules were alive up to 27 days after collection. Artificially constructed ovarian follicles exhibited intact endocrine function as evidenced by the production of estradiol, progesterone, and androstenedione. Oocytes from primary and early secondary follicles were successfully encapsulated, which maintained size and cellular compartmentalization. This novel microfluidic system successfully encapsulated oocytes from primary and secondary follicles, recapitulating the two-compartment system necessary for the development of the mammalian oocyte. Importantly, this microfluidic system can be easily adapted for sterile, high throughput applications.

摘要

我们推测,构建一种包含颗粒细胞和卵泡膜细胞的三维卵巢卵泡,在结构和激素方面能更好地模拟支持早期卵母细胞所需的环境。利用具有可控流速的微流体系统,创建了三维双层(核心和外壳)胶囊。核心由处于0.8 mg/mL胶原蛋白+0.05%藻酸盐中的小鼠颗粒细胞组成,而外壳由悬浮在2%藻酸盐中的小鼠卵泡膜细胞组成。在第1、6、13、20和27天进行了体细胞活力测试和激素评估(雌二醇、孕酮和雄烯二酮)。共聚焦显微镜证实了荧光标记的小鼠颗粒细胞在内层胶囊、卵泡膜细胞在外层外壳中的适当分隔。收集后长达27天,胶囊中超过78%的细胞存活。人工构建的卵巢卵泡表现出完整的内分泌功能,雌二醇、孕酮和雄烯二酮的产生证明了这一点。来自初级和早期次级卵泡的卵母细胞被成功封装,其大小和细胞分隔得以维持。这种新型微流体系统成功封装了来自初级和次级卵泡的卵母细胞,重现了哺乳动物卵母细胞发育所需的双室系统。重要的是,这种微流体系统可以很容易地适用于无菌、高通量应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05f4/7999445/a75b2f57ae33/micromachines-12-00261-g001.jpg

相似文献

1
Creating an Artificial 3-Dimensional Ovarian Follicle Culture System Using a Microfluidic System.
Micromachines (Basel). 2021 Mar 4;12(3):261. doi: 10.3390/mi12030261.
2
Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development.
Biol Reprod. 2006 Dec;75(6):916-23. doi: 10.1095/biolreprod.106.054833. Epub 2006 Sep 6.
3
An ovarian cell microcapsule system simulating follicle structure for providing endogenous female hormones.
Int J Pharm. 2013 Oct 15;455(1-2):312-9. doi: 10.1016/j.ijpharm.2013.07.004. Epub 2013 Jul 15.
4
Direct actions of kit-ligand on theca cell growth and differentiation during follicle development.
Endocrinology. 1997 Sep;138(9):3819-27. doi: 10.1210/endo.138.9.5368.
7
Steroidogenesis by equine preovulatory follicles: relative roles of theca interna and granulosa cells.
Endocrinology. 1991 Feb;128(2):1159-66. doi: 10.1210/endo-128-2-1159.
8
Androgen production in response to LH is impaired in theca cells from nonovulatory dominant follicles in early-postpartum dairy cows.
Domest Anim Endocrinol. 2020 Apr;71:106385. doi: 10.1016/j.domaniend.2019.106385. Epub 2019 Aug 8.
9
Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture.
Hum Reprod. 2016 Jul;31(7):1531-9. doi: 10.1093/humrep/dew049. Epub 2016 Apr 24.

引用本文的文献

1
Current Status of In Vitro Oocyte Growth and Development in Mammals.
Reprod Med Biol. 2025 Jul 17;24(1):e12669. doi: 10.1002/rmb2.12669. eCollection 2025 Jan-Dec.
2
Microfluidic chips in female reproduction: a systematic review of status, advances, and challenges.
Theranostics. 2024 Jul 15;14(11):4352-4374. doi: 10.7150/thno.97301. eCollection 2024.
4
Strategies for developing 3D printed ovarian model for restoring fertility.
Clin Transl Sci. 2024 Jul;17(7):e13863. doi: 10.1111/cts.13863.
5
Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids.
Front Cardiovasc Med. 2024 Jun 13;11:1336910. doi: 10.3389/fcvm.2024.1336910. eCollection 2024.
6
Revolutionizing the female reproductive system research using microfluidic chip platform.
J Nanobiotechnology. 2023 Dec 19;21(1):490. doi: 10.1186/s12951-023-02258-7.
7
Extracellular matrix-derived scaffolds in constructing artificial ovaries for ovarian failure: a systematic methodological review.
Hum Reprod Open. 2023 Apr 20;2023(2):hoad014. doi: 10.1093/hropen/hoad014. eCollection 2023.
8
Artificial Ovary for Young Female Breast Cancer Patients.
Front Med (Lausanne). 2022 Mar 17;9:837022. doi: 10.3389/fmed.2022.837022. eCollection 2022.
9
Oocyte quality following in vitro follicle development†.
Biol Reprod. 2022 Feb 22;106(2):291-315. doi: 10.1093/biolre/ioab242.

本文引用的文献

1
Cancer Statistics, 2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
2
One-step automated bioprinting-based method for cumulus-oocyte complex microencapsulation for 3D in vitro maturation.
PLoS One. 2020 Sep 11;15(9):e0238812. doi: 10.1371/journal.pone.0238812. eCollection 2020.
3
Effects of Alginate Concentration and Ovarian Cells on In Vitro Development of Mouse Preantral Follicles: A Factorial Study.
Int J Fertil Steril. 2020 Jan;13(4):330-338. doi: 10.22074/ijfs.2020.5746. Epub 2019 Nov 11.
4
Efficient biomaterials for tissue engineering of female reproductive organs.
Tissue Eng Regen Med. 2016 Oct 20;13(5):447-454. doi: 10.1007/s13770-016-9107-0. eCollection 2016 Oct.
5
A Microfluidic Device for Culturing an Encapsulated Ovarian Follicle.
Micromachines (Basel). 2017 Nov 20;8(11):335. doi: 10.3390/mi8110335.
6
Cryopreservation of female reproductive potential.
Best Pract Res Clin Obstet Gynaecol. 2019 Feb;55:23-36. doi: 10.1016/j.bpobgyn.2018.08.005. Epub 2018 Aug 31.
8
Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes.
Reprod Biomed Online. 2018 May;36(5):508-523. doi: 10.1016/j.rbmo.2018.01.011. Epub 2018 Feb 5.
9
Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system.
Mol Hum Reprod. 2018 Mar 1;24(3):135-142. doi: 10.1093/molehr/gay002.
10
Enhanced in vitro maturation of canine oocytes by oviduct epithelial cell co-culture.
Theriogenology. 2018 Jan 1;105:66-74. doi: 10.1016/j.theriogenology.2017.09.002. Epub 2017 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验