International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland.
Protéomique Réponse Inflammatoire Spectrométrie de Mass-PRISM, Inserm U1192, University Lille, CHU Lille, F-59000 Lille, France.
Biomolecules. 2021 Mar 4;11(3):382. doi: 10.3390/biom11030382.
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
蛋白质-蛋白质/RNA/DNA 相互作用如何影响细胞中“主力军”的结构和功能,这在 20 世纪已有大量文献记载。存在多种方法可以确定不同成分之间的这种相互作用,特别是质谱 (MS) 方法,其先进的仪器设备已成为分析多种生物分子的重要方法,并为其生物分子过程提供了深入的见解。这篇综述强调了化学在基于 MS 的结构蛋白质组学方法中的主要作用,特别关注蛋白质-蛋白质/DNA/RNA 复合物的化学交联。此外,我们还讨论了用于 MS 分析的交联样品的不同制备方法和鉴定交联肽的工具。交联质谱 (CLMS) 有望识别更大、更复杂的生物系统中的相互作用位点。典型的 CLMS 工作流程允许测量三维空间中氨基酸的接近程度,确定与 DNA 或 RNA 直接接触的蛋白质,并提供有关蛋白质折叠及其在复合物中的拓扑结构的信息。概述了主要的 CLMS 应用、显著的成功案例以及连接蛋白质组学、分子生物学、结构系统生物学和相互作用组学的常见管道。