Optical Sciences Center, Department of Physics and Astronomy, School of Science, Swinburne University of Technology, Melbourne, VIC 3122, Australia.
Center for Translational Atomaterials, Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Melbourne, VIC 3122, Australia.
Int J Mol Sci. 2021 Mar 4;22(5):2582. doi: 10.3390/ijms22052582.
Ligand-protein binding is responsible for the vast majority of bio-molecular functions. Most experimental techniques examine the most populated ligand-bound state. The determination of less populated, intermediate, and transient bound states is experimentally challenging. However, hidden bound states are also important because these can strongly influence ligand binding and unbinding processes. Here, we explored the use of a classical optical spectroscopic technique, red-edge excitation shift spectroscopy (REES) to determine the number, population, and energetics associated with ligand-bound states in protein-ligand complexes. We describe a statistical mechanical model of a two-level fluorescent ligand located amongst a finite number of discrete protein microstates. We relate the progressive emission red shift with red-edge excitation to thermodynamic parameters underlying the protein-ligand free energy landscape and to photo-physical parameters relating to the fluorescent ligand. We applied the theoretical model to published red-edge excitation shift data from small molecule inhibitor-kinase complexes. The derived thermodynamic parameters allowed dissection of the energetic contribution of intermediate bound states to inhibitor-kinase interactions.
配体-蛋白结合是大多数生物分子功能的基础。大多数实验技术都研究最常见的配体结合状态。确定较少出现的中间和瞬态结合状态在实验上具有挑战性。然而,隐藏的结合状态也很重要,因为它们可以强烈影响配体的结合和解离过程。在这里,我们探索了使用经典的光学光谱技术——边缘激发位移光谱(REES)来确定蛋白-配体复合物中配体结合状态的数量、分布和能量。我们描述了一个位于有限数量离散蛋白微态之间的两能级荧光配体的统计力学模型。我们将逐渐的发射红移与边缘激发相关联,以揭示蛋白-配体自由能景观下的热力学参数,以及与荧光配体相关的光物理参数。我们将理论模型应用于小分子抑制剂-激酶复合物的已发表的边缘激发位移数据。得出的热力学参数允许对中间结合状态对抑制剂-激酶相互作用的能量贡献进行剖析。